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1. Introduction

1.1. Background

A rigid pavement system consists of a relatively thin slab of concrete overlying a
subgrade or a base course. The loads on a pavement system during its life span
consist of both static and dynamic loads. The distribution of displacements and
stresses throughout the pavement system resulting from these loads dictates the
life-time performance of the system. In current practice, the effects of static
loads on a pavement system are obtained by simple analytical methods that
model the concrete slab as a beam resting on an elastic foundation. The
dynamic loading response is obtained by multiplying the elastostatic response
with a dynamic load factor. This simplification does not model the wave
phenomenon associated with elastodynamic problems. Another drawback with
this approach is that it also does not adequately account for the interaction
between the concrete slab and the layered subgrade under loading. Any effort to
develop more cost-effective design procedures for pavement systems has to
account for the distribution of displacements and stresses throughout the
concrete slab and the layered subgrade.

Currently, there are no simple analytical methods available that adequately
account for the elastostatic load response of layered pavement systems, let alone
the complicated wave phenomenon initiated by the dynamic nature of most
pavement loads. However, several numerical techniques allow for the modeling of
the load response of layered materials. This study presents one such numerical
technique, called the boundary element method. This method is well suited to
model the semi-infinite boundaries associated with layered pavement systems
and has the added benefit that only the boundaries of the region of interest need
to be divided into elements, which effectively reduces a three-dimensional
problem to a two-dimensional one (or a two-dimensional problem to a
one-dimensional one), with a corresponding saving of computational effort. The
method presented in this report is also capable of accounting for the
displacements and stresses anywhere in a pavement system due to static and
dynamic loads. The approach therefore provides an alternative to the more
» conventional” analysis of rigid pavement systems using methods that discretize
the whole region of interest, such as the finite element and finite difference

methods.



1.2. Objectives

The main objective of this report is to present two numerical computer models
that compute the static and the transient displacements and stresses in
pavement systems consisting of one or more distinct layers of material. Both
models are based on the boundary element method, which is described in detail
in the attachment. The static model is capable of predicting the static solution,
which is sometimes also the steady-state distribution of stresses and
displacements anywhere within a layered pavement system. The dynamic model
is capable of representing the propagation of displacement and stress waves
across the interfaces separating the layers and includes the wave scattering
effects of reflection and refraction from these interfaces. The transient
displacements and stresses tend towards the static or steady-state solution as
time tends to infinity, thus complimenting the solution obtained with the static
boundary element method. Both of these methods are validated through a
comparison with existing analytical and numerical solutions in the literature.
Finally, both the static and dynamic computer models are applied to typical
three layered rigid pavement configurations and loads to provide examples of the
potential usefulness of these methods in developing appropriate guidelines for
transient loading conditions.

1.3. Scope

The attachment to this report (Birgisson, B. 1996. ” A Two-Dimensional
Dynamic Direct Boundary Element Method for Piecewise Homogeneous Elastic
Media.” Ph.D. Thesis. University of Minnesota) describes in detail the
mathematical and numerical implementations, and the verification of both static
and dynamic boundary element methods for layered pavement systems. Both
methods are general in nature and are not limited to layers only. Examples of
other possible problems are inclusions of one material embedded in another, and
the added complication of existing underground openings (for example tunnels
and culverts) in these inclusions or layers. It is shown that both the static and
the dynamic computer models presented are ideally suited for studying both the
elastostatic and the elastodynamic load response of layered pavement systems.
Finally, Section 2 of this report contains examples in which the static and
dynamic computer models are used to obtain the loading response of of three
typical layered rigid pavement configurations.
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2. Three-Layered Pavement Systems

2.1. Elastostatic Case

Most problems of practical interest in rigid pavement engineering involve a top
layer that is made of concrete, overlying a pavement base that is underlain by a
layer of material called the subgrade. The base consists of class 5 granular fill,
but the subgrade frequently consists of the native or in situ material, sometimes
compacted to some specified consistency. The validity of the elastostatic
boundary element computer model presented in this report for modeling layer
problems has already been established (see Chapter 6 in the attachment). It is
however of interest to establish the usefulness of the computer model for
modeling pavement problems with realistic loads, dimensions and material
properties.

The geometry shown in Figure 2.1 is adopted for this example. The layered
half-plane is approximated by a closed domain that is extended suffiently far

‘away from the loaded to minimize the influence of the far-field enclosing

clements. Three distinct cases are evaluated: (1) the same elastic constants for
the concrete layer and the base are used, namely, F; = E; = 4.0 X 106 psi, with
vy = vy = 0.2, whereas for the subgrade, E3 = 8.0 X 10* psi and v3 = 0.4, (2) the
elastic constants for the base and the subgrade are the same, E; = E3 =

8.0 x 10% psi, with v, = v3 = 0.4, but the concrete pavement properties are F; =
4.0 x 108 psi and with v; = 0.2, and finally (3) the values for the elastic
constants for the concrete, base, and subgrade are taken to be representative of
typical rigid pavement systems, with Ey = 4.0 x 108 psi, B, =, and E3 =

8.0 x 10* psi, with v; = 0.2, and v, = v3 = 0.4. The geometry of the pavement
system is modeled with a top row of 30 elements, with 30 elements on each layer
interface, with 9 elements on each side, and 6 elements on the bottom. The
boundary conditions at the bottom of the grid are displacement boundary
conditions, with zero normal and tangential displacements. The nodal boundary
conditions on the left and right hand sides of the grid are mixed, with zero
normal displacement and tangential traction components. The applied surface
strip load was taken to be p, = 100 psi.

To evaluate the differences in load response due to the three loading cases
discussed previously, a number of comparison studies were performed. Figure 2.2
shows the variation in normalized displacements along the surface of the layered
half-plane. Figure 2.3 shows the variation in vertical stress along the interface
between regions 1 and 2, and Figure 2.4 shows a comparison of the vertical

3
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Figure 2.1: Strip-loaded pavement system.
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Figure 2.4: Vertical stress below centerline of strip loaded area.
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stresses along the centerline (z = 0) with normalized depth. As expected, due to
the stiff nature of the concrete pavement, the vertical displacements for Case 1
are smaller around the loaded area than those for the other two cases, but they
also dissipate more slowly than those for Cases 2 and 3. This behavior is
supported by the variation of vertical stresses at the top interface, shown in
Figure 2.3, in which the vertical stresses around the centerline of the loaded area
are higher for Case 1, but dissipate rapidly away from the centerline. Figure 2.4
shows how the vertical stresses for Case 1 remain higher in most of the concrete
section (y/b < 2), but lower and almost constant in the soft soil below the
concrete. Another interesting observation from Figures 2.2, 2.3, and 2.4 is that
the loading responses for Cases 2 and 3 are very similar. Both the vertical
stresses and displacements follow the same pattern, with only small variations in
values. This indicates that the essence of the loading response of a three-layered
pavement system (Case 3) can be captured by a simpler system, in which the
concrete pavement is assumed to overlay a semi-infinite subgrade. The base
layer does not significantly influence the loading response of the system.

2.2. Elastodynamic Case

By recognizing that the influence of loads far away from their points of action is
often negligible, it is possible to approximate the dynamic loading response of
the layered half-plane by cutting the discretized boundaries at a distance remote
from the loaded area. It has been found that distances of 15 < z/b < 20 away
from the centerline of the loaded area are typically quite sufficient, in which b is
the lateral extent of loading away from the centerline. Figure 2.5 shows the
discretization used to evaluate the dynamic loading response for multi-layered
halfplanes. In this case, the discretized boundaries are cut off at a distance of
z/b = 15 away from the centerline of the loaded area. The surface of the
half-plane is modeled with 30 elements, and each side of the interface between
layers is modeled with 30 elements, for a total of 150 elements. The length of
each element is Az = 12 inches, and the number of time steps is n; = 400. In
this example, b was also conveniently selected as being equal to one element
length, Az. The size of the time step was selected so that the longitudinal wave
would travel exactly 85 percent of an element length at each time step. This can
be expressed by a dimensionless parameter

C]_At

Qi =17=
a;
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Figure 2.5: A suddenly loaded three-layered half-plane.
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where g, = Az/2 = element half-length. Finally, a part of the surface at time ¢
= 0 is loaded by the vertical traction p (t), whose time history of loading is given
by Figure 2.6.

The three cases studied previously for elastostatic loading conditions are
evaluated again, namely (1) the elastic constants for the concrete layer and the
base are the same, (2) the elastic constants for the base and the subgrade are
the same, and (3) the elastic constants for the concrete, base, and subgrade are
representative of those values typically found in rigid pavement systems. The
elastic properties of Cases 1 and 2 are contained within Case 3. Therefore, only
the compressional and shear wave velocities, ¢, ¢z, along with the mass densities
of each layer for Case 3 are given below as:

Layer ¢, (in/s) c; (in/s) p (Ibf-s*/in*)
1 140546.0 86066.0 2.25x107%
2 57416.9 23440.4 1.95x107*
3 29650.0 12104.6 1.95x10~*

To evaluate the differences in loading response among the three cases, the
horizontal and vertical displacements are monitored at Stations P (z/b = 3) and
Q (z/b = 8). Figures 2.7 and 2.8 show the normalized horizontal and vertical
displacements versus normalized time for Station P, whereas Figures 2.9 and
2.10 show the results for Station Q. Both the shear wave velocity c; and the
shear modulus G5 used in the normalized time and displacements were always
taken to correspond to Layer 3, namely G3 = 28571.4 psi, and c; = 12104.6 in/s.
Similarly, then b = 12 inches, and p, = 100 psi. Just as in the elastostatic case,
Figures 2.7, 2.8, 2.9, and 2.10 show that the loading responses of Cases 2 and 3
are very similar. Both the horizontal and vertical displacements follow the same
pattern, with only small variations in values. This indicates that the dynamic
loading response of a three-layered pavement system (Case 3) can be captured
by a simple two-layered system, in which the concrete pavement is assumed to
overlay a semi-infinite subgrade.

A comparison of Figures 2.8 and 2.10 shows that the maximum vertical
displacements increase in amplitude between Stations P (z/b = 3) and
Q (z/b = 8) for Case 1, but decrease slightly for Cases 2 and 3. This behavior is
due to multiple reflections within the very stiff concrete layer which act to
increase the amplitude of displacements away from the loaded area as the
concrete becomes thicker. This means that it may not always be justified to
increase the thickness of concrete pavement systems. Rather, these results

8
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indicate that it may be better to simply provide an adequately thick concrete
based on bearing capacity considerations for the given base material.

Figures 2.8 and 2.10 show another interesting feature of the results at
Stations P (z/b = 3) and Q (z/b = 8), namely how the maximum vertical
displacements are larger for Case 1 than for Cases 2 and 3, which is opposite to
the trends observed for the elastostatic results, shown in Figure 2.2. Again, this
shows that any evaluation of the loading response of pavement systems should
consider both the static and the dynamic results together.

2.3. Conclusions

Two boundary element methods for the analysis of elastostatic and
elastodynamic layered pavement problems have been presented. Both methods
assume that the pavement system is two-dimensional in nature. These methods
have been verified through multiple comparison studies with both existing
analytical solutions as well as published numerical results, and have been shown
to capture the essence of the elastostatic and elastodynamic loading response of
pavement problems. Additionally, the methods have been used to solve multiple
layered pavement problems with realistic material properties and geometries to
gain insight into the behavior of pavements under static and dynamic loading

conditions.
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Abstract

Two boundary element methods are presented that compute the static and the
transient displacements and stresses in piecewise homogeneous bodies. These numerical
models are based on the direct boundary element method in which the boundary
displacements and tractions for a given body are solved directly in terms of each other.
The dynamic boundary element method is based on an implicit time-domain algorithm
using a time-stepping scheme. The integrations over each element are carried out
analytically, which increases the numerical accuracy and stability of solutions and
reduces the computer time and memory requirements.

The methods are well suited for the studying of wave scattering phenomena
associated with complicated layer and inclusion problems, such as those encountered in
pavement engineering and mining. These methods are verified for a wide variety of
problems, ranging in scope from well-defined homogeneous half-plane and layered
problems to cases in which more complicated geometries are common, such as in the
blasting of underground openings in multi-layered rock. Both methods assume that the
boundary is composed of a number of straight-line elements, and both are currently
limited to linearly elastic problems where the material is piecewise homogeneous within
a given subregion. Two or more subregions can be connected together at an interface

to form a body with an arbitrary number of connected subregions.
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Chapter 1

Introduction

1.1 Background

Many engineering problems are concerned with the way in which a material deforms in
response to suddenly applied loads. Examples of cases in which dynamic loading effects
are important include deformations in pavements due to moving wheel loads and stress
concentrations around underground excavations caused by blasting, rockbursts and
earthquakes. The response of a material to dynamic loading is generally very
complicated, because the displacement and stress fields change continuously in both
space and time. Accurate modeling of these dynamic changes in displacements and
stresses is fundamental to developing safer and more cost effective design procedures
for underground structures and pavements.

To model the interaction between the stresses applied on a body and its subsequent
deformation, a set of constants that depend on material type are needed. A body
whose material constants change from point to point is said to be inhomogeneous.
Sometimes it is possible to divide an inhomogeneous body into a finite number of
homogeneous portions. Examples of such piecewise homogeneous bodies include soil
and rock layers, pavement layers and rock inclusions in an otherwise homogeneous rock
mass. In current practice, an exact dynamic analysis of the dynamic load response of
such problems is not feasible, even for idealized elastic materials and simplified

geometries, because of the wave phenomenon associated with dynamic problems. The

1



reflection and refraction of waves from the interfaces between two or more different
media will interfere with the original wave patterns to create new superimposed waves
that will again reflect and refract. To model this dynamic behavior, a numerical
technique is needed that accounts for the continuous changes in stresses and
displacements both in space and time. This numerical technique should be able to
model both the transient, short term response due to a dynamic load and the long
term steady-state load response of the body. The transient load response tends towards
the steady-state or static load response as time increases. In some cases, however, it is
only the long term steady-state or static response that is of interest, rather than the
short term transient load response. Any numerical model that is to be used in practice
should have the option of obtaining just the transient load response, just the static
load response, or both the transient and the static load responses.

Numerical methods of analysis for elasticity problems are based on an approximate
solution of a differential equation or a set of equations describing a physical problem.
Currently, there are three main categories of numerical techniques available. The first
widely used method to be developed was the finite difference method which replaces
the differential equations describing a physical problem with local linearized expansions
for the variables, such as truncated Taylor series. The finite difference method requires
both the domain and the boundary of a body to be discretized. A second, more
popular method is the finite element method, which is based on variational principles
or, sometimes more generally, on weighted residual expressions. The differential
equation or its weak formulation is satisfied in an average sense over a finite
subdomain, called a finite element. As with the finite difference method, the finite
element method requires both the boundary and the démain to be discretized. For
complex problems, the necessary number of degrees of freedom can become very large,
leading to high computation costs.

The third method is the boundary element method, which, for linear problems, is
based on the discretization of the exterior boundary only. The basic idea is to
transform the partial differential equations into a corresponding integral description of

the boundary effects, in the form of boundary integral equations. Most boundary



element formulations for elasticity problems use a reciprocal work theorem that
considers the work done by stresses in one solution state on the strains of another
distinct solution state. Typically, one of the solution states is a known analytical
solution to the governing differential equation. The other solution state consists of the
unknown boundary displacements and stresses of the domain of interest. The boundary
element method reduces the dimension of the problem by one, with a corresponding
saving of computational effort, because only boundaries are discretized.

The boundary element method is well suited to model the semi-infinite boundaries
found in pavement systems, as well as the infinite boundaries common to deep
tunneling and mining applications (Crouch and Starfield, 1983). This method models
the material directly as a semi-infinite or infinite region, consequently satisfying the
equilibrium conditions at infinity. Other available numerical techniques such as the
finite element method (Zienkiewicz, 1977) and the finite difference method (Cundall,
1971) require the introduction of artificial boundaries to simulate conditions at infinity.
These artificial boundaries cause troublesome stress-wave reflections which distort the
actual stress wave behavior in the medium. It is possible to evaluate all integrals in a
boundary element formulation either numerically or analytically. The use of analytical
integration is particularly important in elastodynamic boundary element formulations,
because it leads to computational schemes that are more accurate and stable. The use
of numerical integration schemes is made very tedious by the singular nature of the
kernels and the fact that the kernels have moving jumps at the wavefront. Any
numerical integration scheme is very sensitive to the passing of the wave front through
an element, despite computationally costly attempts to divide the element into a small
number of subsegments as proposed by Israil and Banerjee (1990a). A numerical
integration scheme that can satisfactorily deal with these moving jumps currently has
not been reported in the literature. Another reason for using analytical integration is
in evaluating the "self-effect” coefficients, when the source point lies within the same
element as the field point. The integrals involved in evaluating self-effect coefficients
are singular. Therefore, the integrals can only be evaluated in the Cauchy Principal

Value sense. Again, numerical integration techniques tend not to capture this singular



behavior very well.

1.2 Objective

The objective of this study is to develop two numerical computer models that compute
the static and the transient displacements and stresses in media consisting of more
than one material type. Both of these numerical models are based on the boundary
element method in which the boundary displacements and tractions are expressed
directly in terms of each other through a system of influence coefficients. The static
model is capable of predicting the static or the long term steady-state distribution of
stresses and displacements anywhere within a multi-material body. The dynamic model
is capable of representing the propagation of stress waves across the interfaces
separating two or more different materials, and includes the wave scattering effects of
reflection and refraction from these interfaces. The transient displacements and
tractions tend towards the steady-state or static solution as time tends to infinity.
Both computer models are general in formulation so that they can model both layers of
piecewise homogeneous materials and arbitrarily shaped inclusions in an otherwise
homogeneous body. _

To achieve the stated objective, simplifying assumptions are made about the
material behavior and the boundary element formulation. The following assumptions
about the material behavior are made: (a) the region of interest is two-dimensional, (b)
small displacement theory is used to model the material behavior as linearly elastic, (c)
within each layer or inclusion the material is assumed to be isotropic and homogeneous,
and (d) continuity of displacements and tractions is assumed across the interface
between two different materials. The assumption that the displacements and tractions
are continuous across an interface between piecewise homogeneous media in a linear
elastic body is needed to solve for the tractions and displacements at the interface.
This assumes that no slip or movement takes place across the interface between the two
discrete homogeneous regions. The following assumptions about the boundary element

formulation are also made: (a) the boundaries of interest are modeled by straight-line



boundary elements, (b) boundary displacements and tractions are assumed to vary
quadratically over each element, (c) boundary displacements are continuous at
boundary element connections, (d) displacements and tractions vary linearly across
each time step in the time domain for the dynamic model, and (e) body forces and
initial conditions are assumed to be zero.

Both models solve the specified boundary value problem directly. The transient
numerical model solves the specified boundary value problem in the time domain using
a time-stepping technique. Direct solution in the time domain with the use of

straight-line boundary elements allows the fundamental solution to be evaluated

analytically.

1.3 Scope

This study focuses on the development of both static and dynamic multi-domain
boundary element computer models. In what follows, a description is given of the
general mathematical formulation and numerical implementation needed to develop
these computer models. Subsequently, the models are applied to a number of new and
previously published verification and example problems.

Chapter 2 presents a brief literature review of both static and dynamic boundary
element methods, applied to layers and inclusion problems. Section 3 presents the
governing equations for linear elastostatics and elastodynamics in the time domain.
The fundamental solutions of elastostatics and elastodynamics are discussed and some
useful properties of the elastodynamic fundamental solutions are reviewed. The theory
of elastodynamic wave propagation in semi-infinite and infinite space is reviewed, and
the influence of layers and inclusions on wave patterns is discussed briefly. Chapter 4
presents the boundary integral equation formulation for elastostatics and
elastodynamics. Chapter 5 discusses the numerical implementation of the boundary
integral equations, given in Chapter 4. Chapter 6 is devoted to a discussion of several
example and verification problems that demonstrate the applicability of this work.

Finally, Chapter 7 presents conclusions from this study, and recommendations for



future work using the elastodynamic boundary element method.



Chapter 2

Literature Review

In this Chapter, the recent history of boundary element development in three main
areas is summarized. First, the historical development of static boundary element
methods is reviewed. Then, recent developments of elastodynamic boundary element
methods are discussed, with a special emphasis on methods in the time domain.
Finally, a brief review is given of formulations that deal with the modeling of layers

and inclusion problems.

2.1 Static Boundary Element Methods

Boundary element methods are based on transforming the partial differential equations
that describe a physical problem into a corresponding integral description of the
boundary effects, in the form of boundary integral equations. The English
mathematician G. Green was the first one to show how to pass from a differential
domain formulation to a boundary integral description. His work is the basis for Betti’s
(1876) reciprocal theorem, which allows for the solution of an unknown boundary value
problem in terms of a known analytical equilibrium solution. This known analytical
equilibrium solution is generally referred to as the fundamental solution for the
governing differential equation. Somigliana (1885) was the first to use Betti's reciprocal
theorem to derive a fundamental solution to Laplace’s equation for potential theory

applications. Somewhat later, Fredholm (1903) used Somigliana’s integral identitiés to



develop existence and uniqueness proofs for the solutions to Laplace’s equation.

It is due to the work of the Russian mathematicians Muskhelishivili (1953: 1963),
Mikhlin (1957), Smirnov (1964) and Kupradze (1965) that the theory of singular
integral equations and the development of integral equation methods made a decisive
step forward. These methods were gradually introduced into fluid mechanics and
potential theory under names such as "source method” or ”indirect method.” The term
"indirect” implies that the actual boundary conditions were replaced by non-physical
surface density functions. The resulting integral equations had singularities in the
density functions at any corner or edge of the problem geometry. This formulation
requires two steps to solve a boundary value problem. First, solutions that satisfy the
specified boundary conditions are obtained in terms of the density function
singularities. Second, the rest of the boundary parameters are computed in terms of
these singular solutions.

Muskhelishivili and Kupradze were the first to apply these integral equations to
elasticity problems. Muskhelishivili formulated the problem with the aid of complex
variable theory, which limits the formulation of elasticity problems to two dimensions.
To overcome this restriction, Kupradze used Fredholm type of equations that allow for
both two- and three-dimensional formulations. Very extensive investigations of the
"indirect methods” were performed by, for example, Kellogg (1954), Jaswon (1963),
Symm (1963) and Massonet (1966).

In the 1960s various workers started to use computers to solve numerically
Fredholm type of nonsingular integral equations. Examples of this include Friedman
and Shaw (1962), Banaugh and Goldsmith (1963), and Massonet (1966). Subsequently,
Rizzo (1967) developed a computer solution for the singular elasticity formulation in
which the unknown boundary displacements and tractions were solved directly. Rizzo’s
approach is based on writing Somigiliana’s identities directly in terms of the physical
boundary conditions of an elasticity problem and was therefore termed the direct
boundary integral equation method, as opposed to the indirect method, described
previously. Today, the literature on boundary element methods in elasticity is more or

less divided between the indirect and the direct methods, even though the direct




method remains somewhat more favored. Further examples of indirect methods may be
found by Benjumea and Sikarskie (1972), Crouch (1976a), Banerjee (1976) and Brady
and Bray (1978), while further examples of direct methods are found by Rizzo and
Shippy (1968; 1970) and Cruse (1969). |

The earliest formulations of the boundary integral equation method used piecewise
constant variation of the boundary data, until Cruse (1974) implemented a
piecewise-linear interpolation of both the surface geometry and boundary conditions,
resulting in a great improvement in accuracy. Lachat and Watson (1976) were the first
to implement an isoparametric representation for boundary elements similar to that
used in finite element formulations. The method requires numerical integration of the
boundary integral equation terms, and a complicated set of algorithms to deal with the
singular integral equations. The modeling accuracy may have increased somewhat for
curved geometries, but as shown in Chapter 6 in this study, it is possible to model

curved boundaries well with a sufficient number of straight-line elements.

2.2 Dynamic Boundary Element Methods

A number of texts summarize the theoretical treatment of linear elastodynamics using
integral techniques. The most noteworthy are the texts by Love (1906), Wheeler and
Sternberg (1968), Pao and Mow (1973), Achenbach (1973), Graff (1975), Eringen and
Suhubi (1975), Miklowitz (1977) and Aki and Richards (1980). General texts that deal
with the elastodynamic formulations using the boundary element method are those of
Banerjee and Butterfield (1981), Beskos (1987), Manolis and Beskos (1988) and
Dominguez (1994). The first application of the boundary element method to
elastodynamics was by Banaugh and Goldsmith (1963), who applied the indirect
formulation to a steady-state plane elastodynamics problem. Since then, a number of
applications have been presented by many authors, demonstrating the versatility and
usefulness of elastodynamic boundary element methods.

Today, a survey of the literature reveals that two general approaches have been

used for modeling elastodynamic problems by boundary element methods. The first is



a transform domain approach, in which the problem is formulated and solved in a
Laplace or Fourier integral transform domain. Once the solution has been obtained in
the transform domain, the results have to be transformed back to the time dom.a.in.
The principal advantage of this method is that the problem is easy toformulate in the
transform domain, where the problem becomes essentially static. Also, it is relatively
easy to incorporate material damping into this formulation, if desired. The second
method is based on a time domain formulation that allows the problem to be solved
directly using a time-stepping technique. The principal advantages of this method are
that rapidly changing loading conditions can be modeled easily, and the fundamental
solution can be integrated analytically, resulting in more accurate numerical solutions
and faster execution times. It should be noted that transform domain techniques are
not capable of incorporating nonlinear behavior, because the transform domain
solution is essentially a superposition of steady-state solutions. Nonlinear
elastodynamic problems must therefore be solved using the time domain approach.

In general, it can be concluded that transform domain techniques are well suited
for linear problems with long and slowly varying time histories, whereas the time
domain method is well suited for linear and nonlinear problems with rapidly changing
time histories of short duration. As the time history becomes longer, the time domain
method becomes more inefficient, because the solution for the current time step is
formulated in terms of all the previous time steps.

The first work on a transform domain elastodynamic integral formulation was that
of Cruse and Rizzo (1968) and Cruse (1968), who presented a boundary element
formulation to solve a wave propagation problem in a half-plane. In their approach, the
boundary integral equations were formulated and subsequently solved in the Laplace
domain. Then, the results were transformed back into the time domain through a
numerical inversion algorithm developed by Papoulis (1957). This transform domain
technique was found to give good results only for early times. Later, Manolis (1980)
and Manolis and Beskos (1981) used a Fourier transform approach with a more
accurate inversion algorithm by Durbin (1974). Niwa et al. (1975; 1976) and

Kobayashi and Nishimura (1982) also used Fourier transform methods to solve general
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two-dimensional elastodynamic problems.

A big computational problem in wave propagation analysis by transform domain
methods is the existence, in certain cases, of fictitious eigenfréquencies, which create
solution errors. This is particularly prevalent in both half-space and half-plane
problems if use is made of the half-space fundamental solution (see, for example, Rizzo
et al., 1985; Dominguez and Meise, 1991), as well as in the modeling of underground
structures with the full space fundamental solution. This problem can be controlled by
using the full-space fundamental function in conjunction with a free surface
discretization, or by the introduction of viscoelastic damping.

Currently, most of the reported work in the literature on elastodynamic boundary
elements uses transform domain formulations, rather than time-domain formulations.
This may be explained partly by the fact that the time-domain formulation is
considerably more complicated than the transform domain formulation, and that the
nature of the governing partial differential equations in the time-domain is hyperbolic,
rather than elliptic as in the transform domain case. Elliptic equations are more
amenable to numerical approximations than hyperbolic equations (Cruse, 1987). More
importantly, numerical noise can be more easily damped out by the introduction of
viscoelastic damping in the transform domain formulation than in the time domain
formulation. However, the introduction of artificial damping tends to reduce
significantly the amplitudes of predicted displacements and stresses, which cannot be
justified on theoretical grounds.

Karabalis and Beskos (1984) were the first to develop general three-dimensional

elastodynamic methods in the time domain using the direct boundary integral equation

- formulation. Later, Ahmad and Banerjee (1988) and Banerjee et al. (1989) presented a

three-dimensional time-domain algorithm using higher order variations of the functions
in both time and space. However, Karabalis and Beskos (1990) have shown, using a
number of boundary element and finite element discretizations, that the results claimed
by Banerjee and his co-workers are not consistent with the formulation upon which the
results were allegedly based.

In the two-dimensional area, the earlier work in time-domain transient
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elastodynamics is credited to Cole et al. (1978), even though it was restricted to the
anti-plane case. Unfortunately, their method was found to be unstable due to an
incorrect numerical treatment of the convolutions involved (Banerjee et al. 1987).
Later, Niwa et al. (1980) developed a supposedly two-dimensional transient
elastodynamic formulation, by using three-dimensional transient kernels with the third
spatial coordinate playing the role of a time-related variable. This formulation was
found to contain an error in the time domain kernels (see Siebrits, 1992), which may
explain the relatively inaccurate results that they obtained. Mansur (1983) was the
first to formulate a time-stepping algorithm using two-dimensional transient kernels.
Linear and constant time interpolation functions were used to approximate
displacements and tractions, respectively, but constant interpolation functions were
used to approximate tractions and displacements over the boundary elements. The
time integrations were performed analytically, but the spatial integrations were
performed numerically. The traction kernel was derived from the two-dimensional
displacement kernel, through a complex manipulation of the Heaviside function present
in the displacement kernel. This kernel was obtained by assuming a linear variation of
displacements and therefore it can not be used for any other temporal variation, such
as a constant variation. Antes (1985) extended this formulation to include non-zero
initial conditions. The same formulation was agéin used by Antes and von Estorff
(1986) to study the transient response of strip foundations. Dominguez (1994)
extended the formulation used by Mansur to include isoparametric quadratic elements
with a constant temporal variation of tractions and a linear variation of displacements
with time. In order to evaluate the diagonal self-effect terms of the singular boundary
influence coefficients, Dominguez used the method of rigid body motions (see e.g.
Brebbia and Dominguez, 1992) which requires that the domain be closed. Israil and
Banerjee (1990a; 1990b) presented a two-dimensional transient elastodynamic
boundary element formulation, using isoparametric quadratic elements and constant
and linear temporal variation of tractions and displacements, respectively. Their
formulation is only strictly valid for closed domains, because they use "enclosing

elements” in their formulation. Unfortunately, the authors do not explain the concept
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of "enclosing elements” in sufficient detail in their papers.

An essential difficulty with the isoparametric element formulation is that it requires
the use of numerical quadrature to evaluate the boundary integrals. The time-domain
formulation does not lend itself easily to the use of numerical integration schemes in
the evaluation of the diagonal self-effect terms of the singular boundary influence
coefficients, unless the domain is closed (see, for example, Ahmad and Banerjee, 1988:
Beskos, 1993). The use of analytical integration schemes is a novel idea in
elastodynamic boundary element applications (Tian, 1990; Mack, 1991; Siebrits, 1992;
Loken, 1992) and has been shown to lead to highly accurate results, with an associated
reduction in computer time.

Tian (1990) was the first to develop two-dimensional direct and indirect time
domain boundary element methods, using analytical integrations in both space and
time. The direct approach used a linear temporal and a quadratic spatial variation,
and the indirect approach used a constant spatial and linear temporal variation. Tian’s
work was followed by that of Mack (1991), Siebrits (1992) and Loken (1992), who also
used time domain formulations with analytical integrations in both space and time.
Mack used the fundamental singular solution for a three-dimensional displacement
discontinuity in an infinite medium to solve elastodynamics problems having crack-like
geometries. He used constant in space and linear in time elements. Siebrits formulated
the two-dimensional complement of Mack’s work, with linear elements in both space
and time. Finally, Loken presented a general three-dimensional indirect elastodynamics
formulation. He used linear in time and constant in space elements.

Another contribution by Tian (1990) and Siebrits (1992) dealt with the question of
causality. A spatial domain is termed "causal” if (a) the response anywhere within the
domain is caused by a source located in the interior or on its boundaries, and (b) the
straight-line distance between the source and field points in the domain does not cross
the boundary of the domain anywhere. Therefore, a causal domain is just a convex
spatial domain in the mathematical sense. Previously, Triantafylliadas and Dasgupta
(1987) had concluded that problems involving non-causal domains must be solved using

convex subdomains, and they attributed inaccurate results and numerical instabilities
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in their formulations to non-convex domains. Tian (1990) and Siebrits (1992)
demonstrated that this presumed relationship between causal domains and numerical
instability was incorrect. They illustrated that the pre-existence of the fundamental
solution and the satisfaction of boundary conditions guarantees that the boundary
element method is applicable directly to non-causal domains. Recently, however, the
causality problem was again brought up by Triantafyllidis (1993) in a study in which
the problem of diffraction of SH-waves by a cylindrical cavity in an infinite space was
formulated and analytically solved with integral equations that were based on both
direct and indirect boundary element formulations. The results of the indirect
boundary element method were identical to the exact analytical solution, but the
results obtained with the direct boundary element method were not. This issue will be

investigated further in the current study (Section 6.2.2).

2.3 Layers and Inclusions with Boundary Element

Methods

The methodology of modeling piecewise homogeneous materials with elastostatic
boundary element methods has been reasonably well developed. Rizzo and Shippy
(1968) were the first to develop a solution procedure based on the direct boundary
element formulation to solve a general non-homogeneous elastic inclusion problem.
Somewhat later, Butterfield and Tomlin (1972) and Banerjee (1976) employed an
indirect method for piecewise homogeneous elastic solids.

In the field of elastodynamic boundary element methods, numerous transform
domain formulations exist for modeling layers and inclusion problems. Most of these
formulations use full-space fundamental solutions, rather than half-space fundamental
solutions, and just extend the surface discretization only a short distance from the
region of interest. This approach has been used in the frequency domain (Fourier
integral transform domain) for wave propagation in a layered medium by Beskos et al.
(1986), Dravinski and Mossessian (1987) and Hadley et al. (1991) under plane strain

loading conditions, and for three-dimensional conditions by Abascal and Dominguez
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(1986), von Estorff and Schmid (1984), Ahmad and Banerjee (1988), Gaul et al.
(1991), Habault (1990) and Chouw et al. (1991). Beskos (1993) has observed that. for
most loading conditions, the elements far from the region of interest have very little
effect due to the existence of radiation damping both in the fundamental and actual
solutions. However, the existence in the actual problem of surface waves which do not
damp out produces large inaccuracies for certain frequency ranges in the transform
domain. In particular, Emperador et al. (1989) and Gonsalves et al. (1990) have
observed that in three-dimensional problems the discretization can be truncated at a
distance far enough from the region of interest. In two dimensions, Abascal et al.
(1986) and Dominguez and Meise (1991) have observed that some damping has to be
introduced, because waves propagate towards infinity at frequencies higher than the
first cut-off frequency of the system.

The only time domain formulation of elastodynamic multi-material problems
published to date is that by Israil and Banerjee (1990a; 1990b). Their formulation is
limited in scope, because it requires that the domain be closed. They also use
numerical integration of the spatial integrals, which may in certain cases not be as
accurate as analytical integration schemes.

All of the above formulations use some kind of a ”substructuring technique” that
can be described roughly by the following two steps. First, the boundary integral
equations for each material subregion are formulated separately. Second, the
appropriate compatibility and equilibrium conditions are enforced at the interface
boundaries to formulate the boundary integral equations for each interface. The
advantages of the substructuring approach are the following. First, complicated
problem geometries can be handled in a straight-forward manner. Second, with proper
nodal numbering, the resultant set of algebraic equations can be made banded, which
may lead to a reduction in the time required to solve these equations. Third, to obtain
results for interior points, only those boundary elements corresponding to the
sub-region containing the interior point need be included in the computation.
Therefore, the time required to compute results for interior points also is reduced.

The substructuring approach also has disadvantages. First, extra degrees of -
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freedom are introduced at the inter-region boundaries. These extra degrees of freedom
offset some of the potential savings in solution time. Second, the numerical form of the
boundary integral equation formulation is an equilibrium solution that tries to satisfy
the sometimes contradictory states of piecewise variations of surface tractions and
surface displacements. This equilibrium state includes various degrees of stress
singularities at the connections between boundary elements. The strength of these
singularities depends on the types of elements and boundary data approximations
being used. Therefore, some errors are always introduced as a result of the boundary

data approximations (Cruse, 1988).
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Chapter 3

Theory of Linear Elasticity

Although the ultimate goal of this thesis is to describe an elastodynamic boundary
element method, it is recognized that an equivalent elastostatic boundary element
method should be an integral component of that development. Not only are the
solutions to problems of linear elastostatics of great interest in many engineering
applications, but the elastostatic solution provides a good check of the elastodynamic
results, because the elastodynamic results for infinite domains should always tend
towards the elastostatic solution as time goes to infinity. Also, Tian et al. (1990) have
shown that engineering problems such as the modeling of blasting of an underground
opening require a static initial condition to determine the boundary conditions for the
dynamic problem.

In this Chapter, the governing equations for boundary value problems in
elastostatics and elastodynamics are reviewed. Then, the fundamental solutions to
these governing equations are presented. Finally, highlights of the propagation of
elastic waves in infinite and semi-infinite media are discussed, and the scattering and
diffraction behavior of elastic waves due to layers and inclusions are reviewed.

Throughout the remainder of this thesis the Cartesian tensor notation is used and
Einstein’s summation convention is valid. The indices ¢, j, k = 1, 2, 3 represent the
Cartesian coordinates z,y, z (or generally z;). Subscripted indices refer to space,
superscripts refer to time, commas indicate spatial differentiation and dots denote time

differentiation.
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3.1 Governing Equations of Linear Elasticity

Before stresses and displacements can be determined in a body subjected to static or
dynamic loading, a boundary value problem must be formulated that allows for the
calculation of both displacements and stresses. In elastodynamics this boundary value
problem is formulated from the basic equations of linear elastodynamics, which are the
equations of motion, the kinematical relationships and the constitutive law relating
strains and stresses. In the elastostatic formulation, there are no inertial forces present,
whereas in the general elastodynamic case inertial effects have to be included in the
formulation. In the following, first the elastodynamic case is reviewed. Then, the
elastostatic case is presented and shown to be a special case of the elastodynamic case.

The equations of motion can be written as
Ojij + pb; = pu; (3-1)

in which p is the material density, u; is the displacement vector, b; is the body force
vector per unit mass, and o;; is the stress tensor. The kinematical equations relate the

strain tensor ¢;; to the displacements as

Do

€ = = (Wij +uj4) (3-2)

The constitutive law that relates strains to stresses for a homogeneous, isotropic, linear
elastic material is

Oij = /\Gkkéij + QGG,'J' (3—3)

in which ) is a material constant called a Lamé constant, G is the shear modulus, and
6ij is the Kronecker delta (6;; = 1 if ¢ = j; &;; = 0if ¢ # j). Substitution of equations
(3.2) and (3.3) into (3.1) results in the desired displacement form of the equations of

motion
(Cf - C%) ujji + CBui g + fi = s (3-4)

in which f; = pb; is the body force vector and ¢, and c; are the compressional and
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shear wave velocities of the material. These velocities are material dependent and can
be defined in terms of the elastic constants and material density as c? = (A +2G) /p
and ¢ = G/p.

This form (3-4) of the equations of motion, which is often referred to as the
Navier-Cauchy equations, must be accompanied by initial and boundary conditions to
represent a well-posed elastodynamic problem. At every point z € V, where V' denotes
the internal volume of the loaded body, the displacements and velocities must satisfy

the initial conditions

(3-5)

and at every point z, for time ¢ > 0, the tractions ¢; (z,t) and displacements u; (z,t)

are prescribed as

ti=o0jn; =1t (z,t) onz €S,

(3-6)
ui = 4 (z,t) onz€ Sy,

in which n; is the i-th component of the outward unit normal of boundary S at a given
point z € S, and where S, and S; denote the portions of the boundary § = S, + S; on
which the displacements and tractions are specified. For a properly posed boundary
value problem, u; is unknown on S; and ¢; is unknown on S,.

In the elastostatic case, there are no inertial forces and (3-1) can be written as
Cjij + pbi =0 (3‘7)

The displacement form of the equilibrium equations is obtained by substituting the

kinematic equations (3-2) and the constitutive equations (3-3) into (3-7), resulting in
(02 - ,@2) Uj i + 62u,~,]-j + fi=0 (3-8)

which is equivalent to (3-4) without the inertial effects. In the absence of body forces,
(3-8) can be written as

1
sz-L-uj,ji + Ui = 0 (3-9)
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in which v denotes the Poisson’s ratio, which is related to A and G as v =
0.5A/ (A + G). A well-posed boundary value problem in elastostatics requires that at

every point z € S the tractions ¢; (z) and displacements u; (z) are prescribed as

ti=oun; =% (z) onz €S
1 Ji'es ( ) t (3_10)
u; = 4 (Z) onz € Sy

which is the equivalent to (3-8), without the time component.

3.2 Fundamental Solutions in Elastostatics

The direct boundary element method for linear elastostatics in two dimensions relies on
Kelvin’s solution (Sokolnikoff, 1956) of (3-8) due to a concentrated unit line load acting
in the j-direction at a point in an infinite elastic solid. If £ denotes the source point at
which the load is applied, and z denotes the field point at which the effects of the load
are evaluated, then the displacements caused by the unit line load applied at £ can be

written in the form

Ui = U,'j (Q,é) €5 (3'11)

where Uj; (;, §_) represents the displacements in the i-direction at point z
corresponding to the unit line load e; at the source point £. This solution is called the
fundamental solution of two-dimensional elastostatics, and the tensor expression
Usij (g,g) is given by (see, for example, Kuhn, 1988)
U.--(:z:é)=———1—{(3—4u)1n('r)6.~-r,~r-} (3-12)
I A= 8 (1-v)G 7
for the two-dimensional plane strain problem. In these expressions, r denotes the

distance between the field point z and the source point £ and can be written as

r(z.¢) = V(@i — &) (z: - &) (3-13)
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The derivatives of r (g,é) with the respect to the coordinates of z are

ra= 2L ' (3-14)

T 0z T

in which T, =T — fi.
Sometimes it is preferred to write the tensor Uj; (g,é) in terms of a function

g (z, §), which is given by

1

g (.I_,ﬁ) = "=y Inr (3-15)

This results in a new form for the tensor Uj; (g,é), which can be written as

1
Uij (Lé) =G {(3-4v)gbij —rjg,i } (3-16)

The stress tensor can be derived by applying Hooke’s law (3-3) to the displacement

tensor Uj; (g, §_), resulting in
Sijk = A\Upk,mbij + G (Ui,; + Usk,i) (3-17)

in which S;jx denotes the stress tensor, 0;j, due to a line load in the k-direction. Using

(3-17) results in
Sije = {(1 — 20) [6i59.k +6jk9i ] — 7j9yik +200ikg,; } (3-18)

In the boundary element formulation, the stresses are expressed in terms of

tractions ¢; on the boundary. These tractions can be written as

in which the tensor T;; represents the boundary traction in the i-th direction at point
z, due to the concentrated line load at location £ in the j-direction. For a given unit

outward normal ng, the tensor function T;; can be computed from the stress tensor
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(3-18) as
Tij = Skijnk (3-20)

The fundamental displacements (3-11) and tractions (3-19) form the basic building

blocks of the direct boundary element formulation in elastostatics.

3.3 Fundamental Solutions in Elastodynamics

The boundary element method for linear elastodynamics is based on Stokes’s (1883)
fundamental solution to the Navier-Cauchy equations of motion (3-4), due to a
time-varying concentrated unit load in an infinite domain. The form of the applied
time-varying load determines the nature of the fundamental singular solution. In three
dimensions, the singular solution describes the displacements generated in time and
space by a time-varying unit load in space, whereas in two dimensions the singular
solution describes displacements caused by a time-varying line load extending infinitely
in a direction perpendicular to the two-dimensional plane, because the two-dimensional
solution is obtained by integrating the three-dimensional solution from negative to
positive infinity along the z3 axis. These loading differences between the two- and
three-dimensional cases produce a basic difference in the way localized external
disturbances generate displacement fields in two and three dimensions.

The three-dimensional solution is due to a load that is épplied at a single instant in
space and time, and once the waves have passed the point of interest, z, the
fundamental solution returns to zero. Any external disturbance of finite duration that
is applied at a source point § is observed later with an unchanged time history at any
different field point z. This preservation of the time history, called Huygen’s principle
(see e.g. Achenbach, 1973), is not valid in two dimensions, because the two-dimensional
fundamental solution never returns to its original value after the first arrival of the
waves. Signals emitted from different points on the line source continue to arrive at the
point z at all later times, creating the appearance of a distinctive "tail” in the
two-dimensional fundamental solution (Eringen and Suhubi, 1975).

The displacements u; at point z caused by the unit line load at £ are given by
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(Eringen and Suhubi, 1975)
ui = Uy (_J_;,t;é,r =0]|f (t)) e; (3-21)

in which the fundamental solution tensor U;; represents the displacements in the
i-direction at point z and time ¢, due to a line load acting in the j-direction at location
€, applied at time 7 = 0 and with a time variation described by a specified function

f(t). The tensor Uj; is given as (Eringen and Suhubi, 1975)

1 82 cit d
aleesr=0) = (a1 (-) [

t—n/c1

/ uf(t—%—u)du (3-22)
0

in which 7,7 = 1,2 and H(t) denotes the Heaviside function. Also, r = J/TiTi is the
distance between z and £, r; = z; — &;, d;; is the Kronecker delta and ¢, and cq are the
compressional and shear wave velocities, respectively (see Section 3.4.1).

For simplicity of presentation, the load function f (t) was assumed to start at time
7 equal to zero. For any other desired starting time 7, the variable ¢ in the
fundamental solution should be replaced by a new variable, ¢t — 7. Assuming a linear

temporal variation f (¢) =t allows (3-22) to be integrated analytically,

t—n/ca t—n/ca 1 3
1 — _n_ L P
/ vf (t— 1 —u) dv = / u(t 1 u> dv =3 (t Ca) (3-23)
0 0
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This result leads to

1, . .
=20 ) 242 -2
T8, ( 5 + ci) cs r (3-24)

in which ¢4 = ¢1 or cp. Substitution of (3-23) and (3-24) into (3-22) gives

o - (-2 ) o (T
-2 - e ()
(g

+ %W— %—tcosh"1 (%))

+H (t - -01;2) % (czt cosh™} (%t) - \/;z:{:?)}

Just as in the elastostatic case, the stress tensor can be obtained by applying

(3-25)

Hooke's law (3-3) to the displacement tensor (3-25) to get
Sijk = p [(C% - 26%) Umk,mbi; + C% (Uik,; + Ujk,i)] (3-26)

in which Si;x denotes the stress tensor, o;;, due to a time-varying line load in the

k-direction. Using (3-26) results in

St = -%;{H(t )“%1 {34(5,,-rk+5kjri+5ikrj)( - r2)
_27','::77: (\/glt?—_ﬂ+3—4-(6ft2—r2)%)
+(2_C%2) 2 \/m]
-H (t- ’)i[3 (B + by + Saery) (62 = r2)

¢/ c

2ririT 4 3
I (g = o (B - ) @

24




+ M:;ik—& cit? — ,.2]}

Just as in the elastostatic boundary element formulation, the stresses inside the
body are expressed in terms of tractions ¢; on the boundary. These tractions can be
written by (3-19), in which case the tensor Tj; in (3-20) now represents the boundary
traction in the i-th direction at point z, due to the concentrated time-varying line load
f(t) acting at location £ in the j-direction. The resulting fundamental displacements
and tractions are the foundations upon which the elastodynamic boundary element
formulation in this study is built.

The fundamental solution tensor U;; has three important properties: causality,
symmetry and time translation. The causality property implies that a receiving point
can only experience effects of a load that is applied at a source point after the fastest
wave arrives from the source point. Therefore, the fundamental solution tensor
Uij (g, HEAN (t)) is identically zero if t — 7 < 0. The causality property controls the
analytical integration process in the direct boundary element formulation, because it
implies that integration need only be done over elements and parts of elements that are
dynamically active. The traction tensor Tj; (g,t;{,‘r | f (t)) also obeys causality. The
second property is the symmetry property, which can be written as

[l

Uy (26671 £(8) = Uy (&mizt | £(1)) (3-28)

This property implies that the dynamic effects at point z due to a load applied at point
§ are the same as thé effects at point £ due to a load applied at point z. The traction

tensor Tj; (g,t; TS (t)) does not follow the symmetry property. The last important
property is the time translation property, which states that time need only be measured

relative to the time of application of the load. Mathematically, this can be written as

Uss (2,456,010 £(8) = Uy (2.t + 7367 [ (1)) (3-29)

in which 7 denotes an arbitrary time increment. The time translation property implies

that the dynamic history of the solution need only be expressed in terms of incremental
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time. It should be noted that the the traction tensor T;; (:_L'_, t;€,7 | f‘(t)) also obeys
the time translation property. In this study, the time-translation property is used
repeatedly during the temporal discretization of the equations, resulting in a numerical
formulation that uses incremental time, rather than absolute time, and thereby
reducing substantially the amount of computation that is required to account for the

dynamic history of a given problem.

3.4 Influence of Layers and Inclusions on Wave Patterns

It has been shown (e.g., Tian, 1990, Siebrits, 1992) that the boundary element method
for elastodynamics can accurately predict the arrival times and magnitudes of waves in
a elastic body. The characteristics of these waves govern the displacements and stresses
in the body. The elastodynamic part of this study focuses on predicting displacements
and stresses due to waves that are initiated by a loaded boundary in media consisting
of multiple material types, such as layered media and materials with inclusions of finite
spatial extent. The wave behavior associated with these problems is generally very
complicated. When a wave propagating in a medium encounters an inclusion or an
interface between adjacent layers, it undergoes reflection and refraction, which is a
process that produces new waves that propagate inside and/or outside the inclusion or
the adjacent layer. This phenomenon is known as diffraction (see, for example, Eringen
and Suhubi, 1975) when the incoming wave impinges on an inclusion with sharp edges,
and scattering when the incoming wave impinges on a smooth material interface. Any
treatment of a diffraction/scattering problem with elastodynamic boundary element
methods is based on the numerical solution to the Navier-Cauchy equations (3-4), with
appr_opriate boundary conditions at the surface of the scatterer. These boundary
conditions can be simple, such as in the case of a partially loaded half-plane or a
traction-free underground opening, or complicated such as in the case of multiple
material interfaces associated with a layered material.

To gain an appreciation for the different types of wave behavior that can arise in

plane strain diffraction/scattering problems, it is necessary to review briefly the more
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common types of waves associated with linear elastic media. The nature of these waves
depends on the material type and the geometry of the media, but three highly idealized
cases can be identified to provide insight into more complicated wave scattering

behavior: (1) an infinite medium, (2) a half-plane. which is either in contact with air or

with another half-plane, and (3) a layer resting on a half-plane.

3.4.1 The Infinite Medium

Only two types of waves can propagate through a solid, isotropic, homogeneous
medium of infinite extent. These waves are called compressional and shear waves.
Sometimes the compressional wave is called a primary wave (P-wave) and the shear
wave is called a secondary (S-wave). Each wave has a distinct velocity vector
associated with it that depends on the properties of the elastic medium. Compressional
waves travel through the medium with a particle velocity pointed in the direction of
wave propagation, whereas shear waves travel through the medium with a particle
velocity vector that is perpendicular to the direction of wave propagation. The
displacement vector of a shear wave can be decomposed into two-components, one in
the (1, z2) plane and the other perpendicular to it. The former is called an SV-wave
(vertically polarized shear wave), while the latter is known as an SH-wave (horizontally
polarized shear wave). The P- and SV-waves constitute components of a plane motion,
whereas the SH-waves represent anti-plane motion.

When a wave impinges on a discontinuity in the medium, other types of waves may
be formed. The nature of these newly formed waves depends on the boundary
conditions of the discontinuity. It has been found (e.g., Kolsky, 1953) that when a wave
of either the compressional or shear type impinges on a boundary between two media,
both reflection and refraction take place (See Figure 3-1). In the most general case, a
shear or compressional wave will produce both shear and compressional reflected and

refracted waves.
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Figure 3-1: Reflection and refraction of a plane wave at an interface.

3.4.2 Surface Waves

There are some special boundary conditions that produce new types of waves. An
important example is a half-plane in contact with either air or another half-plane, in
which cases waves are formed at the interface between the two media. These waves
propagate parallel to the material interface. The type of wave formed depends on the
nature of the two media. If one medium is air, a surface wave called a Rayleigh wave is
formed, and when both media are solids an interface wave called a Stoneley wave
results.

Rayleigh waves are formed when compressional and shear waves are forced to meet
the boundary conditions associated with a free boundary. In this case, wave refraction
can be ignored, and only reflections need be considered (see, for example, Eringen and
Suhubi, 1975). This results in a characteristic equation that determines the velocity of
the wave. Rayleigh waves have two main characteristics. The first is that the
displacements decay exponentially with distance from the free surface, such that the

wave penetrates only a distance of about twice its wavelength into the interior of a
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body. The second is that the wave velocity is independent of frequency. Such waves are
said to be non-dispersive. An important characteristic of non-dispersive waves is that
they do not change their shape as they travel.

Stoneley waves are formed when compressional and shear waves are forced to meet
the boundary conditions associated with an interface between two different elastic
solids in welded contact. They exist only under complicated requirements about the
ratio of material densities and shear wave velocities associated with the two solids.
These conditions have been the focus of many studies (e.g. Cagniard (1939; 1962),
Sezawa and Kanai (1939) and Scholte (1947), Koppe (1948)) and are beyond the scope
of this study. A useful discussion about some of the findings from these studies is
provided by Brekhovskikh (1980). An important finding by Scholte was that for seismic
waves it can be reasonably assumed that the ratio of mass densities of the two adjacent
media is close to unity, so Stoneley waves can occur only if two adjacent media have
nearly equal shear moduli. It should also be noted that Stoneley waves are

non-dispersive just like Rayleigh waves.

3.4.3 A Finite Thickness Layer on a Half-Plane

The introduction of a finite length scale (such as a finite layer thickness) into a
problem, results in dispersive surface waves that are sometimes referred to as ‘
generalized Rayleigh waves (Eringen and Suhubi, 1975). A simple and illustrative
example of this phenomenon is the case of a finite layer resting on a half-plane. In this
case, the surface waves traveling along the layer are dispersive, resulting in a
dependence of the velocity of propagation on the frequency of the waves. For example,
in the simplified case of harmonic waves, each simple harmonic constituent of the
initial disturbance travels with a different velocity, and, therefore, the shape of the
initial disturbance will be altered as it travels. The disturbance will spread out into
trains of waves, resulting in an oscillatory motion in the z,-direction propagating in the
zy-direction. The disturbances in the layer decay exponentially with depth in the

substratum, resulting in most of the wave activity being focused within the finite

thickness layer. These oscillatory surface waves can only happen when the body wave
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velocities of the layer are less than those of the underlying half-plane. namely when

cy < ¢1 < ¢ < Ty <&, in which ¢; and ¢y are the compressional and shear wave
velocities of the upper layer, & and & are the compressional and shear wave velocities
of the underlying half-plane, and c is the propagational wave velocity of the generalized
Rayleigh wave. A detailed discussion on generalized Rayleigh waves can be found in
Achenbach (1973), Eringen and Suhubi (1975) and Aki and Richards (1980).

An extension of the case of a finite layer on a half-plane to the case of a number of
layers of finite thickness may lead to the formation of interface waves that are similar
to Stoneley waves, except that they are dispersive in nature. The occurrence of these
waves is dictated by the same conditions that govern the existence of Stoneley waves,

with the additional requirement that at least one of the adjacent layers be of finite

thickness. -
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Chapter 4

Boundary Integral Equation

Formulation

The basis for the boundary element method in elasticity is that the displacements and
stresses inside an elastic domain are determined uniquely by the boundary
displacements and tractions of that domain (Love, 1906). The basic idea behind the
method is to transform the governing partial differential equations of linear elasticity
presented in Chapter 3 into a corresponding integral representation of the boundary
effects in the form of boundafy integral equations. These transformations are presented
in this chapter for both elastostatics and elastodynamics. Betti's reciprocal work
theorem is used to obtain the elastostatic integral representation, whereas Graffi’s
(1947) reciprocal theorem is used in the elastodynamic case. Graffi’s reciprocal
theorem is the dynamic equivalent of Betti's theorem.

The integral representations for both elastostatics and elastodynamics involve two
different elasticity solutions, of which one has to be a known analytical solution. The
unknown solution states consist of the boundary displacements and tractions at the
boundary of the domain of interest. The known solution state is chosen so that it
accommodates arbitrary distributions of these unknown boundary displacements and
tractions. The fundamental solutions presented in Chapter 3 have the necessary

properties needed for a known solution state.
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4.1 The Elastostatic Integral Representation

To obtain an integral description of a boundary value problem, it is necessary to first
transform ar :quivalen- -oblem described by the partial differential equations to one
described by integral ey..ations. The resulting integral equations require discretization
only over the boundary of the domain, thus reducing the dimension of the problem by
one. The boundary integral formulation can be deduced in different ways. Within
linear elastostatics the derivation can be performed by (a) Green’s third identity, (b)
Somigliana’s identity, (c) weighted residual methods or (d) Betti’s reciprocal work
theorem. The classical way of derivation is based on Betti’s theorem, and this is the
method that will be described below. Other methods are discussed in great detail by
Brebbia et al. (1984), Cruse (1988) and Kuhn (1988).

Betti’s theorem relates the actual unknown distribution of displacements and
tractions on the boundary of a domain and body forces (ui, t:,b;) to a reference

solution state (&, %;, b;):
/tiﬁ,-dS-i-/biu,-dV = /f,u,dS%—/B,u‘dV (4-1)
S v S v

in which S is the boundary of the elastic domain V. In the classical boundary element
formulation the fundamental Kelvin solution (3-9) of a unit line load applied to an
arbitrary source point P (§), with £ € V' is considered for the reference solution state.
The unit line load acts in either of the two orthogonal directions, indicated by the unit

vector e;. This can be represented with a body force description

=6 (g, _E_) e (4-2)

where 6 (g, §) represents the Kronecker delta function, £ indicates the source point and
z the current field point. Each component of the unit line load causes corresponding

displacements and tractions, which can be written in the form

ui(z) = Uiz, §e; C)
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ti(z) = Tij(z.§e;

where U;; and T;; are given by (3-16) and (3-20), respectively. In the absence of body

forces in the unknown solution state, substitution of (4-3) into (4-1) leads to (Love,

1906):
€ (g) u; (§) = /tj (z) Ui (.J_«‘,ﬁ) ds(z) - /“j(
S

S

D
S
.

N
N
I

SN’

Q.
7.
—~
&

(4-4)

in which £ ¢ S and ¢ is defined as

The identities (4-4) and (4-5) form an integral representation that relates an unknown
elastostatics solution state (u;,t;) to a known fundamental solution state (&;,£;). This
integral representation can be used to determine displacements u; within the domain V.

The case ¢ (§) =1 for £ € V is the well-known Somigliana’s identity.

4.2 The Elastodynamic Integral Representation

The reciprocal work theorem between two elastodynamic states extends Betti’s static
reciprocal theorem (4-1) to include inertial forces and time history of loading. This
theorem was first stated by Graffi (1947) for bounded domains, and later extended by
Wheeler and Sternberg (1968) to include unbounded domains. The similarity of the
equations in this section to those in the previous section will be apparent, illustrating
that the elastodynamic boundary element formulation in the time domain is a direct
extension of the elastostatic formulation.

The dynamic reciprocal theorem relates two distinct elastodynamic solution states
of displacements, tractions and body forces that satisfy the Navier-Cauchy equations
(3-4) on a regular domain V; the first is the unknown solution state (u;, ¢; b;) with
initial and boundary conditions defined by equations (3-5) and (3-6), and the second is
a known reference solution state (ﬁ,-, ti, 5,'). Assuming that the solution states have a

quiescent past and that the initial conditions are zero, Graffi’s (1947) dynamic
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reciprocal theorem can be written as:

t

t t t
/ / FudSdr + / / BiwdVdr = / / tidSdT + / / bwdVdr  (46)
S oV 0 S oV

0

In the elastodynamic boundary element formulation the fundamental displacement
solution (3-21) of a line load §(z — £)é(t — )e; applied to an arbitrary source point &,
with £ € V, is considered for the reference solution state. The equivalent fundamental
solution tractions #; can be obtained by first substituting (3-27) into (3-20) and then
using (3-19) to obtain ¢;. If it is assumed that the body forces in the unknown solution
state are absent, then the displacement u; in V' can be expressed in terms of integrals

of the tractions and displacements on S as follows:
S S

in which ¢ is defined by equation (4-5), U;; is the fundamental solution tensor given by
(3-25) and Tj; is obtained by substituting (3-27) into (3-20). The time t is the receiving
time of the fundamental solution U;; and T;; and the boundary displacements u; and ¢;
represent loading functions that have been acting at point z from time zero to time t.

The time integrations from zero to ¢ in (4-6) are already included in the formulation of

the fundamental solution tensors U;; and T;;, because

t
Ui; (g, t;€,0 | ¢t (z, t)) = /V,-j (;:,t;_f_, T) t;(z,7)dr (no sum)
0
¢
Tij (g,t;é,o | u; (z, t)) = /S,-J- (g, t;§, ‘r) uj (z,T)dr (no sum)
’ (4-8)

where V;; and S;; are the fundamental solution tensors for displacements and tractions
in the ¢-th direction due the line load 6(z — £)6(t — r)e;. Equation (4-7) illustrates that
the time-varying displacements at any point £ within an elastic body are determined

uniquely by the values of the time-varying boundary displacements and tractions, in
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the absence of body forces and with zero initial conditions.

4.3 The Direct Boundary Element Formulation

The direct boundary element method is designed to compute the unknown boundary
displacements and tractions in a well-posed boundary value problem directly from the
specified tractions and displacements on the boundary, without discretizing the interior
domain V. Inspection of equations (4-4) and (4-7), which form the basis for the direct
boundary element formulation in elastostatics and elastodynamics, respectively, reveals
that these equations are only valid inside or outside the domain V. In their current
form, these equations solve for displacements at any point £, inside or outside the
domain V/, due to displacements u; and tractions t; applied at a boundary point z. In
order to include the case when £ lies on the boundary, the point £ has to be allowed to
approach a point on the boundary S in the limit.

There are two equivalent ways of allowing point £ to approach the receiver point
on boundary S. The first method allows the point £ to approach the boundary S from
the inside of domain V/, followed by the integration of the boundary integrals. The
second method which assumes that the point £ lies outside domain V/, evaluates the
integrals first, and then allows the point £ to approach the boundary S. These methods
are formally equivalent and will be described briefly below.

The first method (allowing the point £ to approach a boundary from the interior of

the domain V') results in the elastostatic equation (4-4) becoming
& m/t (@ Us ‘n/u, T;(z.€)ds(@  (49)
and the elastodynamic equation (4-7) becoming

) S
(4-10)

in which the symbol P denotes that the integrals must be evaluated in the Caug:hy
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principal value sense. The coefficient ¢;; (é) is a jump term that results when point §
passes to the boundary S from inside the domain V. For a smooth boundary,
Cij (é) = 0.5 at the boundary, but when the pcint § approachés a corner on the
boundary, the jump term takes on different va .es, depending on the sharpness of the
corner (see, for example Brebbia et al., 1984). Most of the published work in the
literature takes these singular integral equations as a starting point for the numerical
direct boundary element solution technique (e.g. Brebbia et al., 1984; Banerjee et al.,
1986; Kobayashi, 1987). In this formulation, the boundary integral equations are
discretized by using either straight-line or curved boundary elements. The Cauchy
principal value integrals can be evaluated numerically over curved elements and
analytically over straight-line elements. The use of numerical integration schemes for
evaluating the Cauchy integrals requires extreme care so that the quadrature points do
not coincide with the point £, in which case the boundary integrals become singular.
The second method, which is due to Crouch and Starfield (1983) assumes that the
point £ lies outside the domain V. This results in the elastostatic equation (4-4)

becoming

[6@Us (@8)ds(@) = [w@Ts (8 ds@ (+11)
S

S

and the elastodynamic equation (4-7) becoming
[Us (266016 @0)ds(@) = [Ty (2te0lw@n)ds@ (12
S S

in which every integral is regular and not a Cauchy principal value integral. This
formulation allows the boundary integrals in (4-11) and (4-12) to be evaluated
analytically, with point £ outside the domain V. Then, to obtain the case when £
approaches point z, the limits are taken from the outside of the domain V. This
approach avoids the difficulties involved with evaluating numerically any Cauchy
principal value integrals. However, it is assumed that the integrations can be evaluated
analytically so that the limits can be obtained. In this work, (4-11) and (4-12) are used

as the starting points for the elastostatic and elastodynamic direct boundary element
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method.

Once the boundary displacements and tractions are obtained, equations (4-4) and
(4-7) can be used to obtain displacements at any interior point £ in the domain V.
Comparable formulations for the interior stresses can be obtained by applying the
kinematic equations (3-2) and Hooke’s law (3-3) to equations (4-4) and (4-7) resulting
in

0',]

A Unim (2,€) t (2) 8

e

+ G (Ui (2.6) + Upes (2.€) ) te (2)] ds (2)
= [ A T (2.6 we (@) 8 (413)
S

+G( ,k,( E)+T]k;( ,§))uk(1)] ds (z)

for the elastostatic case and

05 () = [ [} Ui (216,01t @ 1) 85
S

+GUik,; (Lt,é,() | tk (z, t))
+ GUiks (2,60 | te (z.1))] ds (2)
= [ [A Tonkem (21,60 | e (@.8)) 8 (+14)

S
+GTi ; (la"tév 0 uk (2, t))

+ Gl (2,60 | w (2.1)) ] ds (2)

for the elastodynamic case. The elastodynamic formulation (4-14) is often written in
terms of mass density p and compressional and shear wave velocities c; and c;. This

can be accomplished by substituting p (c? — 2¢3) for A and pc} for G in (4-14).
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Chapter 5

Numerical Implementation

The boundary integral equations (4-11) and (4-12) provide the mathematical
formulation of the elastostatic and elastodynamic direct boundary element method. It
is obvious that closed form solutions to these equations are attainable only for very
simple geometries and boundary conditions. For realistic engineering applications, the
boundary element technique employs a numerical model to implement equations (4-11)
and (4-12) in a computer program. In this chapter, the basic steps of this numerical
solution technique are described.

The basic idea behind this numerical technique is to transform the fundamental
integral equations (4-11) and (4-12) into a system of linear algebraic equations by
means of discretization of the boundary geometry and the boundary displacements and
tractions. The unknown boundary tractions and displacements can then be obtained
by solving the system of equations for given boundary conditions. Once the boundary
displacement and tractions are known, equations (4-4) and (4-13) can be used to obtain
static displacements and stresses at any interior point in the domain of interest.
Similarly, equations (4-7) and (4-14) can be used to obtain the dynamic displacements
and stresses at any point within the domain.

This chapter is be divided into four main sections. The first deals with a numerical
implementation of the elastostatic equations (4-11). Fifst, the case for a homogeneous
medium will be discussed, followed by the case for a general piecewise homogeneous

medium. The second section describes the equivalent numerical implementation of the
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elastodynamic equations (4-12). The elastodynamic numerical formulation employs a
numerical time-stepping algorithm that accounts for the temporal variation in
boundary displacements and tractions. A time-stepping algorithm developed by Tian
(1990) for homogenous media is generalized to accommodate piecewise homogeneous
bodies. This algorithm determines the boundary displacements and tractions at each
increment in time, by assuming a functional variation in the boundary parameters in
both time and space. The boundary displacements and tractions are assumed to
change linearly over each time step, and quadratically over the boundary of the body.
The shape of the boundary is approximated by straight-line elements.

The third section in this chapter deals with the evaluation of stresses at the
boundary for both the elastostatic and elastodynamic formulations. Finally, the fou_rth
section deals with the calculation of displacements and stresses at internal points
within any domain. Both the elastostatic and the elastodynamic cases are discussed.

For simplicity, the following presentation is restricted to traction boundary value
problems. However, the algorithms developed can easily be applied to displacement or

mixed boundary value problems.

3.1 Elastostatic Boundary Element Formulation

The integral equations described by equation (4-11) serve as the starting point for the
numerical implementation of the elastostatic boundary element formulation. The
procedure for the numerical implementation of this equation is to first discretize the
boundary into a series of elements over which displacements and tractions are written
in terms of their values at a series of nodal points. Writing the discretized form of
(4-11) for every nodal point, a system of linear algebraic equations is obtained. Once
the boundary conditions are applied, the system can be solved to obtain a numerical
solution to the boundary value problem. This numerical solution allows all boundary
displacements and tractions to be known, so that (4-4) and (4-13) can be used to
obtain the displacements and stresses at any internal point within the domain of

interest. All integrals are evaluated analytically at the element level and the boundary
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is approached from the outside of the domain, as described in Chapter 4.

The discretized version of (4-11) involves integrals of the products of the kernel
functions Uj; (g, §) and Tj; (g, é) and the boundary parameters t; (z) and u; (z). The
boundary contour S of the elastic body is divided into N straight-line elements,

denoted by S, b =1,2,... N, resulting in

}:/T,stu, z=Z/Uur€ (z)ds (z) (5-1)
b=14, b=13,
in which all the kernel functions and boundary parameters are written in terms of
global coordinates. The displacements and tractions along each element on S are
assumed to vary quadratically.

The analytical evaluation of the integrals in (5-1) can be simplified greatly by
evaluating them in terms of local element coordinates, instead of global coordinates.
Unfortunately, a formulation that only uses local coordinates is not efficient either. The
assumption of a quadratic variation in displacements and tractions across each element
requires three nodal points per element to ensure the continuity of boundary values
between neighboring elements. The use of a local coordinate system in the formulation
of the problem would require different local expressions at any end node connecting
two elements with different inclination angles. To simplify the formulation at such end
nodes, the boundary displacements and tractions are denoted in the global coordinate
system. Because U;; and T;; are already written in terms of the global coordinates
(z,y), it is necessary to express these global coordinates in terms of local coordinates
(z,9).

To establish a relationship between local and global coordinates, the local
coordinates (Z, ) are aligned such that the % axis coincides with the local straight-line
element that approximates the boundary and the § axis aims in the direction of a
normal pointing away from the element, as shown in Figure 5-1. Without loss of
generality it can be assumed that the origin of the global coordinate system is at the
center of the receiving element. Then, the coordinates of the loading point farez=¢

and y = 7 in the global coordinate system and Z = £ and § = 7 in the local coordinate
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system. The global (z,y) coordinate system in Figure 3-1 is then defined by the

transformation formulas

£-§ = (£—E)cosB—(§—7)sinf

y—n = (Z-7)sinf+(§—1n)cosf (5-2)

in which 3 is the angle of inclination of the local element.

-

-

Figure 5-1: Local and global coordinate systems.

Now, relationship (5-2) can be used to write the fundamental displacement and
traction tensors U;; and Tj; in the global coordinate system, with its space variables

expressed in terms of the local coordinate system, resulting in

N N
> / Tyudz =3 / Usjt;dz (5-3)

b=13¢, b=15¢,

where Uj; and T;; are in the global co-ordinate system (z,y). The integral variable Z is
in the local coordinate system, as well as the omitted z and £. The quantities U;; and
T;; in (5-3) are obtained from definitions (3-16), (3-18) and (3-20) by using coordinate

transformation formulas (5-2), and can be written as (Crouch and Starfield, 1983)

Uz = E}-G- [(3 —-4v)g -7 (sin 25% + cos 25%)]
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A —
ey = e (5-4)
Uw = 515 [(3 —4v) g +7 (sin 25% ~ cos 25%)}
and

T = 20-0Z g <sin 255% + cos 25%)

T = (1-2) g—g +7 (cos2ﬂ661_:269g —sin gﬁi_g>

Ty = —(1-2)=+1 (cos 256?:517 —sin 252—3) (5-5)
Tyy 2(1 -v) ‘gyg + 7] (sm2[3 26y + cos Qﬂg-z_,—z)

where the function g (Z,7) is defined as

1

T (L. )

/2
4 (1 ]1

9(z,9) = (5-6)

This function and all of its derivatives are to be evaluated for § = 0 in (5-4) and (5-5).

5.1.1 Spatial Interpolations of Boundary Parameters

As stated previously, the boundary displacements and tractions are assumed to vary
quadratically over each boundary element. This quadratic variation of boundary
parameters across each element is taken with respect to the left (£ = —a), right

(Z = +a) and center (Z = 0) boundary element nodal points, in which a denotes the
element half-length. The boundary displacements and tractions across an arbitrary

element S, can then be written as

ui (Z) = (u5)p b (Z) + (U)o bC () + (U5)pp #R (2)
tj (j) = (tj)b[, éL (Z) + + (t )bC éc (Z) + (tJ)bR ér (%) (5'7)
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in which ()., ( )pc and ( ),z denote the nodal displacements or tractions at the left,
center and right nodes of element S,. The functions ¢ (Z), ¢c (Z) and ég (Z) are the

corresponding quadratic interpolation functions given by

2a \a
=2
bc(@) = 10-3 (5-8)

The substitution of (5-7) and (5-8) into (5-3) results in the left side of (5-3) being

expressed as

N N
b=15,, b=1 S
N
+2_ (U / Tij¢c (T)dz (5-9)
b=1 3

N
+ Z (uj)bR / Tior(Z)dZ
b=1 S,

and the right side as

N

N
> [Ust;@dz = Y (t)y, [Usér (2)de
Sp

b=15, b=1
N

+3 (tise / Uijdc (Z)dz (5-10)
Sp

b=1
N

+>_ (e / Uijor (Z)dz
Ss

b=1
in which U;; and T;; are given by (5-4) and (5-5), respectively. Now, substituting (5-4)
and (5-5) into (5-9) and (5-10) results in the following algebraic expressions
+a

1z /2
Ly - [ilZ(Z_ r
(BL), = /2a<a 1.0>Uud:r

-a
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1 +a ag ag
= E/ [(3 —4v)g -7 <sm28—a€ + cos Zﬁgy:)] -C-ﬁd:c

—-a

1 iy dg dg\1 &
~Ic / [(3 —-4v)g -1 (sm2ﬂ§ + cos 2[3%” ;dm

-G

+a 2

(8S), = / (1 0- —-) Usadz
- 215 70[(3 —d)g—7 (sin Qﬂ% +cos 2ﬂ-§—§)J dz
+a

00 0 -
~35 / [(3 —dv)g -1 (szﬁ@_g: -+ cos 255%)] a—zd:z:

-a

(82), = /%g( +10)Umd5c

- & Tlo- w197 (0262 1+ cas2s))| B

= 4G/{(3 dv)g n<sxn2ﬂai+cos2ﬁ6g> a2dx
+a

1 3 (3n2522 < cas222)| 2

+E [(3_4U)g—n(51n2ﬂ62+C08256§) adz

and so forth for the traction coefficients, and

+a
(4%), = /%z (Z -1 o> Tyadz

-a

g\] 2
= 2/[2(1—u)?3—!/-—n(sm25 8y+cos2ﬂay2>} —dZT

+a 2 2
< 1n2ﬁ +0052ﬁay2>}

1)

-a

ISER3]

[2(1—1/)

8’I8’
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= / [2(1 - v) B_gz o/ (sinQBai_:ag17 -+ cos 25%%)] dz (5-12)

(Af") J

Il
—
| =
&
TN
[SE R3]
+
—
o
Na—
g
&

2

= 5 [2(1—u)a—n(sm2ﬁ ay-+-cos2l36y2)}d§:

-a

2

/[ (1-v) %—r)(sm2ﬂa 6y+cos2ﬁay2>} —dZ

and so forth for the displacement coefficients. The notation ( ) s denotes that the

&

coefficients are associated with element J. Substitution of the algebraic expressions

(5-11) and (5-12) into (5-9) and (5-10) results in

N

Z/Tz,u, (z)d Z { u5) L ( )J + (45) ;¢ (Ag)J + (u5) ;5 (Af})J} (5-13)

b"'lsb J=1

and

/th {(tj)JL(Bi'E), (t; )JC( )+(t,),R( R)J} (5-14)

b‘].sb

Subsequently, substitution of (5-13) and (5-14) into (5-3) gives the following expressions

N
> {0, (45) ,+ ) (49), + w)sr (48)}
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N
= {5 (B5), + o (B5), = t)1a (B5), (5-15)

in which ¢ = z,y and j = z,y. All the integrals needed in (5-15) can be evaluated
analytically. The results of the necessary integrations are listed in Appendix A.
Finally, it should be noted that (5-15) can be rearranged so that the summations
are performed over the nodal points rather than the elements. In this case, a closed
boundary contour approximated by N elements will have 2N nodes. Then, for any
given element J, the boundary displacements at the center nodes wc are denoted by
(zut’:) 7 and the boundary displacements at the end nodes we are denoted by (zu;;) n
where we and we denote odd and even nodal numbers ranging from 1 to 2N — 1 and

from 2 to 2N, respectively. This allows expression (5-15) to be rewritten as

WL we we N we we we we
o )+ B [ (48),,+ E(4) )
IN=1 e we 2N we we we we
- 21:3 (tj)J(Bg)J + §4 [(ti)J-l(Bg)J_l + (t5), (B{;)J] (5-16)

The analytical evaluation of the boundary integrals in (5-16) results in an algebraic
equation with 4N unknovm displacements, because there are two unknown
displacements (u;) and (u‘y) at each node i. To obtain the same number of equations as
unknowns, the loading point £ is allowed to approach every node on the boundary,
resulting in two algebraic equations for each node. The loading point £ approaches each
center node from the outside of the domain in a direction normal to the boundary
element, as shown in Figure 5-2a. Similarly, it is convenient to let the loading point £
approach each end node along a straight line bisecting the exterior angle between two
neighboring elements, as shown in Figure 5-2b. The displacement and traction
coefficients in (5-16) are called self-effect coefficients (Crouch and Starfield, 1983) when
the loading point £ and the receiving point z are located on the same boundary
element. All of these self-effect coefficients are listed in Appendix A.

The final system of algebraic equations consists of 4V by 4N equations, and can be
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Figure 5-2: Self-coefficients for (a) center and (b) end nodes.

written as

Au=Bt (5-17)

in which u and t denote the vectors of nodal displacements and tractions, and the
coefficient matrices A and B are defined as [4;5],, and [Bijlpg, in which ¢ and j denote
either the x or y direction and p and g denote the boundary nodal source and receiving

points, respectively. Both p and q take on values from 1 to 2N. Therefore, A can be

written as
(A, - [Ailiow
[Aij]ml Tt [AiJ']zNzN

The sub-matrices in (5-18) can be written as

Az A:
Al =| " % (5-19)
Ay; Ay‘y
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The coefficient matrix B is to be written in an identical way to (5-18) and (5-19). This
completes the description of the algebraic equations that are necessary for the
numerical implementation of the elastostatic direct boundary element method for

homogeneous media.

5.1.2 Piecewise Homogeneous Media in Elastostatics

In the following, the preceding numerical algorithm for homogenous domains is
extended to include multiple materials. The method used in this thesis for modeling
piecewise homogeneous regions consists of combining numerically two or more
homogeneous regions along common straight-line or curved interfaces with a
”substructuring” technique. Figure 5-3 illustrates this technique with a body consisting
of two material sub-regions, represented by Q; and Q,. For the numerical modeling of
such piecewise homogeneous bodies, the boundary of each material sub-region is
discretized into a number of straight-line elements, including interfaces between any
two sub-regions. Each region is then discretized as if it were a separate body. This
discretization process results in all interfaces between sub-regions being represented by
two sets of boundary elements. Elements along one side of an interface must match the
elements on the adjoining side of the interface exactly. Once each sub-region has been
discretized it is formulated as a separate boundary element region. Applying the

boundary element algorithm (5-17) to each sub-region results in

A A u B B t
1 A v _ 11 B 1 (5-20)
An Apn uys B B tis
for sub-region 2, and
Ap A i By B t
_22 _21 2 | _ _22 _21 _2 (5-21)
A A U B, By tor

for sub-region Q3. The bars in (5-21) denote sub-region 2, the first subscript in the

sub-matrices in (5-20) and (5-21) denotes the location of the source point and the
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Figure 5-3: Substructuring of a body consisting of two materials.

second subscript denotes the location of the receiver point. For example, the
sub-matrices A,;, Ays denote that the source point is located on the free boundary of
sub-region {2; and the receiver point is located on the free boundary of sub-region
and on the interface I between sub-regions ; and 3, respectively. The vector uy
denotes the displacements at the free boundary of the sub-region ; and u;; denotes
the displacements on the interface part of the discretized sub-region ;.

The interface displacements and tractions can not be obtained from (5-20) and
(5-21) as written, because at each interface node both quantities are unknown. If it is
assumed that the two homogeneous sub-regions Q; and §2; are fully bonded at the
interface, such that no slip or separation can occur, then the interface displacements
are continuous across the interface and the tractions associated with each sub-region

are equal in magnitude, but opposite in sign, namely

uyy = g

ty = —tor (5-22)
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This relationship must be satisfied at every nodal point on the interface between the
two sub-regions. In the presence of interface corners this formulation assumes that
nodal tractions and displacements are continuous across a node. It is shown in Chapter
6 that this assumption is reasonable for many cases, such as the case of a loaded
annulus in an infinite plate.

Equations (5-20) and (5-21) can be combined using the fully bonded interface
condition expressed by (5-22), resulting in

An Ay By O ug [ By, O
A A B 0 u B 0 t
n _11 _11 ) _11 _ n ) _1 (5-23)
0 Ay -By Ap tor 0 B2 t2
A 0 A; -By Ap 1L v D) ] i 0 Bp ]

in which the terms on the right-hand side are the known traction boundary conditions
and the terms on the left-hand side denote the unknown boundary and interface

displacements and tractions. Equation (5-23) can be rewritten as
Cx=b (5-24)

in which

[ Ay Ay By O
A A B 0

C= n A 193 _11 ) (5-25)

0 Ay -By Ap

0 A” —-ﬁn An_

denotes the boundary element influence coefficient matrix. The unknown vector x in

(5-24) can be written as

T
x =[ w uyy ty O ] (5-26)

in which the superscript T denotes the transpose operator, and the known vector b can
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be written as

b o
By O t
b=| o (5-27)
0 B t2
L 0 B[z J

It should be noted that even though equations (5-23) to (5-27) were shown for a
traction boundary value problem which assumes that the tractions on the boundary are
known, the formulation is completely general, so that the equations can be rearranged
to solve problems in which the boundary displacements or a mix of boundary

displacements and tractions are known.

5.2 Elastodynamic Boundary Element Formulation

The procedure for the numerical implementation of the elastodynamic boundary
element formulation is similar to the elastostatic implementation, discussed in Section
5.1, with the additional introduction of a numerical time-stepping algorithm that
accounts for the temporal variation in boundary displacements and tractions. The
integral equations described by equation (4-12) serve as the starting point for the
numerical implementation of the elastodynamic boundary element formulation.

The evaluation of the fundamental solution tensors Uy; (_.1;, t;€,01t; (g,t)) and
T;; (g,t;_{_,o | uj (z, t)) in (4-12) occurs at time t and includes the action of the
boundary displacements u; (z,t) and tractions t; (z,t) from time 0 to ¢. To account for
the entire loading time, the time t is divided into m intervals of duration At, so that

the left-hand side of (4-12) can be written as

/ Uy (2.6:6,01t; (z.1)) ds (z) = Z / Uy (mAG (K~ 1) At by ) ds (5-28)

k=1 S

and the right-hand side as

/Ilj (2.t:6,01 v (z,1)) ds (=) =Z/:r,, (mat; (k- 1) At,ujp)ds  (5-29)
K} k=1% )
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In equations (5-28) and (5-29) the loading point £ and the receiving point £ have been
omitted for simplicity of presentation and t;k) and uj(xy are the boundary
displacements and tractions over the time interval (k — 1) At to kAt. Combining (5-28)

and (5-29) in accordance with (4-12) results in

m m
3 / Usj (mAt; (k-1) At,tj(k)) ds=Y / Ty (mAt; (k-1) At,uj(k)) ds  (5-30)
Ic=15 k=ls

The unknown displacements u; (z,t) for time step m can be written as

i/U,J (mAt; (k - l) At, tj(k)) ds

/T;j <mAt; (m-1) At,Uj(k)) ds =

m

-5 / Tij (mt; (k = 1) At uygy)) ds

k=1 S
(5-31)

To simplify the calculations of displacements in (5-31) at time step m, the time
translation property (3-29) is used to shift the loading and evaluation times of the
fundamental solutions by time (k — 1) At. This means that all the loading times

(k — 1) At become zero and all the evaluation times mA¢t become (m — k + 1) At, in
which k ranges from 2 to m. Finally, just as in the elastostatic formulation (5-1), the
boundary contour S of the elastic body is divided into NV straight-line elements,

denoted by Sp, b =1,... N, resulting in

i/ﬂj (At;O,uj(k)) ds = i Z/U, ((m -k+1) At;O,tj(k)) ds

b=15§ k=1b=13
N
- Z/T‘,J ((m —k+ 1) At; O,Uj(k)) ds

(5-32)

in which the unknown displacements at each time step m are written in terms of the
time history of displacements and tractions.

At each time step m, equation (5-32) can be used to formulate a system of
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T;; in (5-33) are obtained from definitions (3-25), (3-26) and (3-20) by using the

coordinate transformation formulas (5-2), and can be written as

1 1 u? - ? uv 3/2
sz = éﬂ'—p {H(t - T‘/C]_) ?1 [(GT COs 26 - FSID 25) (Ci',t;2 — r2>

+l (cltcosh‘1 (c_1t_> —\/c3t? — r2>]
2 T

u? - p?

-H{t —r/cz)é [( = cos283 — —751n26> (c%f? _,.2)3/2

—% (cztcosh"1 ( > t? - 7'2)]

(5-34)

' 1 1 [u? -2 2,2 _2\3/2
Uy = b {H(t -r/c1) E?- ( 5 sin28 + — r4 cos2(3 (Clt -r )
~-H(t—r/ _1. u m2ﬂ+——- 28 ( 242 _ r2 32
c2) 3 s 374 €08 )
Uyz = Ux'y

©

2 2
Uy = % {H(t - r/cl)-clg [— (u. ey cos 2 — ——-sanB) (cft2 - r2)3/2

1
+ l (cltcosh'1 (c—lt-) — /At - r2)]
2 T
2 2

—H(t—-r/cy) é [— (%— cos2(3 — 3—4 sm2ﬁ) ( - r2)3/2

-4 oo (2)- )

and

. = Ly { (t = r/ey) %l (8&2 v 20 (3c}t? +v?)

2r 3rd

2,2 242 | .2

v 7 L 86%tuu_2u(c1t + v#)
+26§1r2> eitt —ré +sin2f ( 3r6 3ré

LI I B X Y
37‘2+2c%1r2) et~

cos 203

c%t2 - -r2]
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algebraic equations in which the unknowns are the boundary displacements at that
time step. These algebraic equations are obtained through the analytical evaluation of
the integrals in (5-32). To facilitate this integration process, it is necessary to assume a
functional variation in time and space for these parameters, because the true temporal
and spatial distributions of the boundary displacements and tractions are not known a
priori.

In this study, the boundary displacements and tractions are assumed to change
linearly over each time step. At each time step, the displacements and tractions are
assumed to be distributed piecewise quadratically over each straight-line boundary
element of the body, just as in the elastostatic case, discussed in Section 5.1. Once the
integrals have been evaluated and the desired system of algebraic equations has been
established, the unknown boundary displacements for each current time step m caﬁ be
obtained. This allows the dynamic history of displacements to be established in a
step-by-step fashion as time progresses.

The analytical evaluation of the integrals in (5-32) involves the spatial integration
of Us; and T;; over straight-line elements. The evaluation of these integrals can be
simplified greatly by writing them in terms of local element coordinates, rather than
global coordinates, as discussed for the elastostatic case in Section 5.1. Following the
same procedure as described in Section 5.1 for the elastostatic case, the transformation
formulas (5-2) are used to write the fundamental displacement and traction tensors Uj;
and T;; in the global coordinate system, with space variables expressed in terms of the

local coordinate system, allowing (5-32) to be re-written as

i/ﬂj (At;O,Uj(k)) dz = i i/Uij ((m -k +1)At;0, tj(k)) dz

b=le k=1 =IS|,
N

- Z Z/Tn ((m— k+1) At;O,uj(k)) dz

k= =le

o
—

—
o

(5-33)

where U;; and T;; are in the global coordinate system (z,y). The integral variable Z is

in the local coordinate system, as well as the omitted z and £. The quantities U;; and
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1 o83 2w (332 -v?) | v\ oo
_H(t—r/CQ)Z; [cos23< s 3 T 92 citd —r

(8 (@) u)\ T
-+-31n25( s a T 52 yeit? —re

v
o ]242 _ 2
-+-27_2 cit r}}

9 2,2 2 242 1 32
Tye = 1 {H(t —1'/61)-(::'—1 {00525 (-—8c%t — ule 2
1

2 3ré 3rt

+ 51:_2 - #) m +sin23 (chf_zsvs

2v(3c§i+v )\/m+_\/cz_t2__r2(-;§——1>]
_H(: _r/c2)c_12 [cos 03 (_8(:-22;:: u 2u (csaﬂ +v?) _“_2> /c2
R e I Ca

+ 5% 32 — ,.2]} (5—35)

o & sty _ ou (4 +)
Ty = 5 {H(t r/c1) o [Cosw (" 36 T 3rd

242,,3
. T 7 L 8cit*v
T3 2c§1r2) Ve =7 +Sm2g( 3ré
2v (3c3t? + v?) v 2_2_ U 2 2L
S ) LG G =)

2.2 L} 2 2
~-H(t —T/Cz)c—l' [cosZB (_Sét L L Lithalli ‘l') cjt? —r?
2

376 3r4 612

) 8c3t2v3 v (3c3t? + v2) /
+sin 28 ( 3% 3 3t2 - r?
21'2 Gt - ,-2] }

8c?t213 + 2v (3c3t? + v?)
3rb 3r4

Ty = 51-7; {H(t—r/cl)(f—l1 [cosw (—
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8ct?v?u  2u (c?t? + v?)
242 2 ; 1 1
cité —r¢ 4sin28 [ — +
) ' g ( 3ro 3rd

u . v
. ) c%t2 —ri_ — /it — r""J
25y 2cy

2.3 2t2 2
CH(t=r/ep) & cos2g [ -3BEY |, (34 +v)-—”—> 32 — 2

v
2c3, 2
u

c2 ' 3r6 3rd 2r2

8ckt?v?u  2u (3t +v?)  u N
BT e g VAt

inwhichu=2%-¢, v=7 -1, and cp; = cZ/c}.

5.2.1 Temporal Interpolations of Boundary Parameters

+
<]
[=]
(3]
w
|
w

Implementation of the time stepping algorithm in (5-33) requires assumptions about
the temporal distribution of boundary displacements and tractions from one time step
to another. As stated previously, it is assumed that the boundary displacements and
tractions for any given node on the boundary are piecewise linear over each time step
(Figure 5-4). The formulation of the temporal interpolation functions for the boundary

parameters follows Tian's (1990) work, in which the boundary displacements ujky and

4

Ny ]

v
-~

t k-1 tk t k+1

Figure 5-4: Variation of displacements between time steps.
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tractions ¢;(x) were modeled as a series of triangle-shaped pulses with the local nodal
values u¥ (Z) and t¥ (Z) as peak pulse values (Figure 5-5). Each triangular pulse with
peak value uf’ or tf stretches over two time steps from (k — 1) At to (k + 1) At, with
the peak value centered at kAt (Figure 5-6). Tian (1990) illustrated that the simplest
way to perform the integrations required in (5-33) is when the triangular boundary
displacement and traction pulses are written in terms of linear combinations of
functions of the form H (t)t/At, where H (t) is the Heaviside function. The piecewise

linear formulation is then obtained by combining three such functions, staggered at

successive time steps, resulting in

Tk—1 Tk Tk+1 _
Uick) = [H(t = te—1) *; —2H (t — ti) ~ H(t = tes1) T:] uf (z) (5-36)

and

- T T _
i) = [H(t ~ te1) L 2H (¢ = 1) 2+ H (¢ = tira) -"A-ft-l] @) (537)

where t; = kAt, and 7y = t — tx. The fundamental solution tensors due to these

triangle-shaped displacement and traction loading pulses can be obtained directly from

uort;
r'

v
-~

t k-1 t k t k+1

Figure 5-5: Temporal interpolation with triangular hat functions.
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Figure 5-6: Triangular pulse at time step k.

(6-34) and (5-35). Keeping the loading time zero by using the time translation
property (3-29) to shift the evaluation times to correspond with the pulses in (5-36)
and (5-37) results in

Uss ((m~ k+1) A0, ;) = [U ((m —k+1) A0, H (2) Ait) (5-38)

~oU ((m ~ k) ALO, H (2) —At-t-)

+ Ui ((m -k —1)At;0,H (t) é)} tf ()

and

Ty ((m—k+1)A60,u;4) = [T ((m —k+1) A0, H (2) A%) (5-39)
0T, ((m — k) AL 0, H () é)
+ T, ((m — k= 1)ALO, H (t) é)} ok (2)

Substituting (5-38) and (5-39) into (5-33) and summing over the nodal values of

boundary displacements uf (Z) and tractions tf (Z), with k ranging from 1 to m, results
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in

Z/nJ(AtOH )At) ™ (2)dz

b=13,
ZZ/[ ,,(m k+1)AtOH()At)

k=1 b"lsb

— U, ((m — k) AL, H (£) Zt) + U, ((m k= 1) A0, H (2) Z%)] t* (z) dz

m—-1 N

‘ZZ/[ i ((m k+1) At; 0, H (t) >

k=1 b=14,
" t N
_ o7, ((m—k)At;O,H()At)+1“,J ((m—k—l)At;O,H(t)E)]uf(x)dx
| (5-40)
To simplify the notation, (5-40) can be written as
/ S [ LTiur (2)dz S [ ot @) az
b=13, k=1b6=13
m—-1 N
- S / LT+ (z) dz (5-41)
k=1 b—lsb
in which
ko~ T : Y ( _ t )
ITE = T, (kAt,O,H(t) At) oT;; ((k ~ 1) A0 H ()
t
+ T ((k 2)AtOH()At>
(5-42)
ko _ 1. . 2N o (k- ¢
LUE = U <kAt,0,H(t) At) 2U; (( 1) AL 0, H () At)
t
+U; ((k 2) At:0, H()At)

The foregoing results illustrate that the fundamental solution for triangle-shaped

temporal displacement or traction pulses can be obtained by simple addition or

subtraction of the fundamental solutions U;; and T;; given by (5-34) and (5-35),
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applied at different times. It should be noted that the terms in (5-41) and (5-42) are
always non-negative because of the causality property of the fundamental solution
tensors. L'y; and T;;, which states that whenever the evaluation times kAL, (k—1) At

and (k — 2) At in (5-41) and (5-42) are less than zero, the fundamental solutions are

equal to zero.

9.2.2 Spatial Interpolations of Boundary Parameters

As stated previously, the dynamic boundary displacements and tractions are assumed
to vary linearly in time between successive time steps. At each time step these
boundary displacements and tractions are evaluated at each boundary element node.
To complete the analysis, some functional variation of these parameters over the
boundary elements must also be assumed. In this study, the dynamic displacements
and tractions are assumed to vary quadratically in space over each boundary element,
Just as in the elastostatic implementation discussed previously.

The quadratic variation of boundary parameters across each element is taken with
respect to the left (Z = —a), right (Z = +a) and center (z = 0) boundary element
nodal points, in which a denotes the element half-length. The boundary displacements

and tractions across an arbitrary element S, can then be written as

@) = (1), 000+ (), 50 @) () ons
5@ = (), 0@ + (), 00 @) + (#), or(2) (5-43)

in which (), ( )uo and ( )sr denote the nodal displacements or tractions at the
left, center and right nodes of element S,. The functions oL (Z), ¢c (Z) and ¢g (%) are
the corresponding quadratic interpolation functions given by (5-8). The substitution of

(5-43) into (5-41) results in the left side of (5-41) being expressed as

N
3 / T @)ds = 5 (u7),, [ 176 )z (5-44
Sh =1 Sy
N
+b§(u;")bc s.,/ LT} ¢c () dz
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N

+3° (4, [ LTh6r (@) dz
Sy

b=

The first term on the right-hand side of (5-41) can be written as

k=1 b=

ey

m N
>3 [rgd @ as
Sy

and the second term as

m—-1 N
>3 / LTT~*+1uk () dz
k=1 b=1$¢,

k=1 b=1 S
m N .
+ (), [ LVF " 0r (@) da
k=1 b=1 Sy
m-—1

in which LUf, and LT}, are given by (5-42). Because of the linearity of the governing

equations, it should be noted that rather than increasing the counter & on the

boundary displacements and decreasing it for the kernels in the time-stepping

summation in (5-45) and (5-46), the reverse form may be obtained, namely

m N
3 / LULEP*+ (z) dz

k=1 b=ls°

.

=1 b=1

+

m N
3 () / LU g (2) dz
= 4

k=1 b=1

NE
M=

<+

k=1 b=1

(g7, / LUY ¢ (z) dz
Sp
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and

m—-1 N m
> [imid @) = Y
S

k=1 b=1 y

(5-48)

These forms lend themselves more easily to numerical implementation, because once

the boundary element influence coefficients have been calculated for all time steps in an

ascending time-stepping order and saved to a data file, they are directly accessible at

each time step k, without any further manipulation. Substitution of (5-8) into (5-47)

and (5-48) results in the following algebraic expressions

(L), = [tohe@ s
Sh

J
1z (z
“I(Z k dz
/ 2a(a 1.0) LU dz

—a

(82)) = [LUhsc(@)ds
S
+a

2 .
= / (1.0 - g) LU* dz

-a

Sp
+Gl _ _
= [2Z(Z k 1z
= /2a (a +1.o)' LU, dz
—-a
62
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and so forth for the traction coefficients. and

(Aﬁx)’j = / LT 61 () di

+a
1z k
= /5; (;1. - 1. 0> LUzzde

-a

(42)) = / LT g1 (3) d2

+a
= [lz(z_ k
= / = (a 10) LU* dz (5-50)

k
(4%)" = / LTS 41 (2)dz
= lE(-—10 LU* dz
- /20. a i

and so forth for the displacement coefficients. The notation ( )S denotes that the
coefficients are evaluated at the k-th time step and are associated with element J.

Substitution of the algebraic expressions (5-49) and (5-50) into (5-44), (5-47) and
(5-48) results in

. [rr e = 3 {(or),, (48); (), (45,

(7). (48’ o

for (5-44), and

m N kbt m N et 5 .
;El S{ LUST ™+ (@)dz = ;H{(t;" ), (B5)" (5-52)
() 55 (57 38
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for (5-47), and finally

k. m—k+1 = =& m—k+1 L\
ZZ/LT,J W (e = SO0 {(u ), (45) (5-53)

(4 (), (). 4}

for (5-48). Subsequently, substitution of (5-51), (5-52) and (5-53) into (5-41) yields

S {(07) 1 (48, + () (45), + (45 .0 (45

u
0‘
i
2
&
*

J=1
m N
= Sl () (57, 55,
+ (tpen) (Bf})l;} (5-54)
m N
_Zz{(u;n—k+l , (A11;)’;+(u;p—k+1) (Atc)

in which ? = z,y and j = z,y.

All the integrals needed in (5-54) can be evaluated analytically. The results of the
necessary integrations are listed in Appendix B. It should be noted that in evaluating
these integrals analytically, a simplifying assumption was made for the case when the
waves have just arrived at points between any two nodal points. In this case, it is
assumed that all the terms at the wave fronts ¢t = r and c;t = r are zero. This
assumption is based on the observation that the results of the analytical integrations
are all zero at the wave fronts, except possibly terms involving the arctangent function.

Finally, it should be noted that.(5-54) can be rearranged so that the summations
are performed over the nodal points rather than the elements. In this case, a closed
boundary contour approximated by /N elements, will have 2V nodes. Then, following '

the notation used in the elastostatic formulation, expression (5-54) can be rewritten as

IN—1 we we 1 2N we we 1 we we 1
> (), (), 2 (), (45), (), (45),
we=1,3,.. we=24,..
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LEAA we we k
- nuZ BT,

m aN we we ko we o ue k

+kz—‘:1wc=22,:4,.. (t;” k+1>J-1(B§)J—1+<tT )J(Bij)J (5-55)
mo 2 we we k

"L, (0,
m. 2N we e & y .

- T ) (), (),

At each time step, the analytical evaluation of the boundary integrals in (5-55) results

in an algebraic equation with 4V unknown displacements, because there are two

)
1
unknown displacements (u7*) and (u’") at each node i. To obtain the same number of

v
equations as unknowns, the loading point £ is allowed to approach every node on the
boundary, resulting in two algebraic equations for each node. The limiting process to
the boundary is identical to the elastostatic limiting process, discussed previously. It
should be pointed out that the resulting self-effect coefficients listed in Appendix B
contain no singularities. All the singularities have been eliminated as a result of using
analytical integration to evaluate the integrals. This is a fundamental reason for using
analytical integration schemes, rather than numerical integration schemes in
elastodynamic time domain boundary element methods.

The final system of algebraic equations resulting from this limiting process consists

of 4N by 4N equations at each time step and can be written in matrix form as

m m
Alum = Z Bktm—k+1 — E Akum—k+1 (5—56)
k=1 k=2

in which the terms under the summation signs represent the time history of the
boundary displacements and tractions and the vectors u* and t* are the nodal
displacements and tractions at time kAt. The coefficient matrices A* and B¥at time

kAt are defined as [Af]] and [B,"J] , in which 7 and j denote either the z or the y
Pq rq
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direction, and p and g take on values from 1 to 2/V. Therefore, AF can be written as

], e (A
AF = : : (5-57)
[Aécj]zm {Ag]ww
in which
Az, Ak
451, = i Py (5-58)

The coefficient matrix B* has the same form as in (5-57) and (5-58).

5.2.3 Piecewise Homogeneous Media in Elastodynamics

The numerical implementation of the dynamic direct boundary element method was
formulated in (5-56) for homogeneous media. In the following, (5-56) is extended to
include solutions of displacements and tractions at interfaces between zones of
homogeneous materials with different material properties. An approach will be
developed that exploits the equivalence between the static formulation, discussed
previously, and the dynamic formulation at any given time step. This equivalence

between the two formulations can be observed by rewriting (5-56) as

i Brtm—k+1 = iAkum—k-&-l (5-59)
k=1 k=1
This form is closely related to the numerical formulation of the static boundary
element method, expressed by (5-17). A comparison between the dynamic formulation
(5-59) and the static formulation (5-17) illustrates that the main difference between the
two is that the dynamic formulation requires summations over the time history of
loading, whereas the static formulation is only applied once. This difference is due to
the nature of the fundamental solutions in the dynamic and static formulations.
The static formulation is based on a fundamental solution due to a load that is
static in time, whereas the dynamic formulation is based on a fundamental solution

that is due to a load that changes with time, making it necessary to include the time
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history of loading in the dynamic formulation. However, at each time step, m. the
dynamic coefficient matrices A™ and B™ are obtained in an equivalent way to the
static coefficient matrices A and B. This equivalency between the elastostatic
formulation and the elastodynamic formulation at each time step allows (5-56) to be
extended to solve for the interface displacements and tractions at each time step. The

continuity conditions, expressed by (5-22), are applied at each time step, resulting in

uf; = aj;
™= —th (5-60)

This gives a system of equations that can be written as

m

Y CExmoEHL = pm (5-61)

k=1
in which C* denotes the coefficient matrix at time step kAt. The vector x* denotes the
unknown boundary and interface displacements and tractions at time step k, and the
vector b™ denotes the knowns at time step m. More specifically, C* can be expressed

as

Af, Ay BY 0
Af, A} Bj 0

Ck=| ! I (5-62)
0 A3 -B;3 A3
0 A} -Bf A}

-3 -

in which the sub-matrices at each time step k are obtained in a similar way as in the
elastostatic formulation, described previously. A comparison of the elastostatic
boundary influence coefficient matrix in (5-24) and the current elastodynamic
boundary influence coefficient matrix (5-62) clearly illustrates the equivalency of the
static formulation and the elastodynamic formulation at each time step. The unknown

k

vector X* can be written as

xf=| uk uf, T, ok (5-63)

67

4 aam



1

in which the superscript T denotes the transpose operator. and the known vector b™

can be expanded as

([ B o ] ‘
b= Y Bh 0| (5-64)
= 0o Bk gkl
|| 0 Bf )

Just as in the elastostatic case, this formulation assumes for convenience of
presentation that the tractions on the boundary are known. However, the formulation
is completely general and by rearranging the equations appropriately, it can be used to
solve problems in which the boundary displacements or a mix of boundary

displacements and tractions are known.

5.3 State of Stress at the Boundary

The boundary element formulations discussed previously only provide the
displacements and tractions at the boundary and interface of a given sub-region.
Sometimes this is sufficient, but many engineering applications require a knowledge of
displacements and the whole state of stress at the boundary and interface. In this
study, the procedure for determining the normal stress parallel to a boundary or
interface consists of the differentiation of the boundary displacements. This yields the
local state of strain along the boundary and opens the way to the computation of the
corresponding stress components. In the following, the procedure is formulated for the
evaluation of the local state of strain and stress on the boundary of an statically loaded
domain. Subsequently, it will be extended to any dynamically loaded region. All
expressions below are formulated in terms of the local element coordinates (Z, §),
shown in Figure 5-1. The origin of these coordinates is assumed to be at the stress
point under consideration.

For plane loading conditions, it follows from the kinematic relation (3-2), that the
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strain at the boundary or interface is

Gu,—,

22 = 5z

(5-65)

in which ezz denotes the component of the local strain tensor and u; the displacement
in the local Z-direction, respectively. Now, applying Hooke’s law (3-3), the following
relationship between stress and strain at the boundary point in question is obtained:

Ozz = l_il; [I/O'gg + 2G655] (5—66)

This relationship in addition to
Oz = tz Og5 = tg (5—67)

fully determines the plane state of strain at the boundary. In (5-67), ogg is the
component of the local stress tensor in the normal or § direction, which can be
calculated in terms of the known boundary tractions in the global coordinate system
(z,y) as

oz = —~tzsinfB + ty cos 8 (5-68)

where (3 is the angle of inclination of the element in question. The local strain tensor
€zz can be calculated by differentiating the displacements with respect to the local

variable Z, resulting in
ou 0 .
€2z = _6; = T (uz cos B + uy sin 3) (5-69)

The displacements on the boundary are given by (5-7) and (5-8) in terms of nodal
values. Differentiating these with respect to the local variable Z and evaluating the

results at the center of the element, namely at Z = 0, results in (5-69) becoming

€zz = % [((uz)b}z - (uz)bL) cos 3 + ((uy)bR - (uy)b[,) sin 5] (5-70)
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Now, substituting (5-68) and (5-70) into (5-66) gives

Ozz = ITUU (=tzsin B + t, cos 3)
G
T=va (((uz)pp — (uz)yy) cos B

+ ((uy)pg = (uy)yy) sin 3] (5-71)

This completes the full description of stresses at the boundary of the statically loaded
domain in question.

In the elastodynamic case, the stresses, tractions and displacements are obtained at
the end of each time-step &, in which case the formulation is identical to the
elastostatic case. Therefore, the elastostatic formulation above can be repeated exactly

at each time step k, resulting in the elastodynamic version of (5-71) as

v
oks = 1_y(—t§sin5+t§c05/3)
+

(1_—%; [((uﬁ)m - (Ug)b[) cos 3
’ ((uz)bﬂ - (uz)bb) sinﬁ] (5-72)

The elastodynamic formulation can also be written in terms of mass density, p, and

compressional and shear wave velocities c; and cy, resulting in
2 .
ok = ( - —;) (—t’; sing3 + t’; cos 5)
1

206 (1= F) ()0 (), o8

+ ()1 = (1)) ] (573

5.4 Interior Displacements, Stresses and Velocities

The numerical formulation presented up to this point has focused on calculating the
unspecified displacements and tractions on the boundary S of an arbitrary domain Q.

If it is desired to calculate the displacements and stresses at points inside the domain 2
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then use has to be made of the discretized form of the integral equations in Chapter 4.
For example, if it is desired to calculate displacements at interior points. then the
discretized forms of equations (4-4) for the elastostatic case and (4-7) for the
elastodynamic case have to be used. In the following, a brief review is provided of the
algebraic expressions that result from the discretization of the elastostatic and
elastodynamic displacement equations, (4-4) and (4-7), and a procedure for obtaining
interior stresses is developed.

The discretized form of (4-4) can be written as

N

( ) Z{ t’)JL( )J+(tj)JC (Bg)J+(tj)JR (Bg).l} (5-74)

=1

N
- {(uj)JL (Ag')J +(u3) ¢ (Ag)J +(u5) R (Aﬁ)J}

J=1

in which J denotes element number, and where, for example, (¢;),, and (u;),, denote
the traction and displacement in the j-th direction at the left-hand node on element J,
and the coefficients (Af;)J and (B,-ZJ’.)J denote the boundary element influence
coefficients at the same node. A comparable formulation for the interior stresses can be
obtained by applying the kinematic equations (3-2) and Hooke’s law (3-3) to both sides
of (5-74). Because all the necessary differentiations are with respect to £, they can be
carried out directly inside the integrals. Therefore, it is instructive to first re-write

(5-74) in an alternative form, namely

N

" (§) = 2 / UijdL (Z) dZ + (t5) ¢ / Uijéc (z)dz
b=1 A 3,
+ (tj)JR/Uij¢R (z)dz
Sp

—Z (uy) JL/TU¢L (%) dz + (uy) JC/T;J¢C
+ () 1z [ Tidn (2)dz (5-75)
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Now, introducing a counter wn = 1,2,3 for the nodes on the left (L), center (C) and

right (R) hand sides of the element J gives

3 N 3
wu(E) = Y (tun / Usjbun (Z)dZ =3 D (45)yn / Tijbun (Z)dE  (5-76)
b=1 wn=1 S b=1wn=1 I

Substitution of (5-76) into the kinematic equation (3-2) and Hooke’s law (3-3), results

in

N 3
o5 (§) = 23 (tr)un / AUmkmbij + G (Usk,; + Uski)] $un (Z) d2

b=1wn=1 S,

N 3
=3 3 (Wedun [ (A Tonkmbis +G (Tins + Ty dun (2) 2
Sy

(5-77)

The procedure for calculating internal displacements and stresses in the
elastodynamic formulation is similar to the elastostatic formulation, presented above.
To calculate the displacements at interior points, the discretized version of (4-7) is

used. It can be written as

k=1b=1wn=1 A
m N 3

IO / TP $um (2) dE (5-78)
k=1b=1wn=1 S

The interior stresses can be obtained by substituting (5-78) into the kinematic equation

(3-2) and Hooke’s law (3-3), resulting in

G
m N 3
-3 Y (), [P (519)
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+G (»_,—;r;;wx +T1Ti-k+1)} bum (2) dE

It should be noted that in the above elastostatic and elastodynamic formulations,
both u; and o;; are in terms of the global coordinate system, whereas all the space
variables inside the boundary element influence coefficients are evaluated in the local
coordinate system (Z,7) originating at the midpoint of the j-th boundary element. The
point £ has coordinates (£,7) in the global coordinate system and coordinates (£,7) in
the local coordinate system (Figure 5-1). Therefore, the chain rule for partial
differentiation has to be used to perform the necessary differentiations. Using the

transformation formulas

my
Il

§cos 3+ nsin 3

—€sinfF + ncos 3 (5-80)

=
Il

allows a relationship to be established between the global and the local coordinates.
Now, using the chain rule for partial differentiation results in

a _ o9 070 .0 .

5~ e Tagan e T

0 8_6- 0 0iad 9

d
—_ 6§-+C°Sﬁ

=sin —a—n-_- (5-81)

n = Ondk " ondq

These relationships relate differentiations with respect to global coordinates to
differentiations with respect to local coordinates. Once the differentiations have been
carried out, all integrations in the above expressions can be performed analytically. All
integrations necessary to evaluate (5-76) and (5-77) are presented in Appendix A, and
all integrals necessary to evaluate (5-78) are presented in Appendix B. Similarly, all the
differentiations necessary to obtain (5-79) from substituting (5-78) into the kinematic
equation (3-2) and Hooke’s law (3-3) were originally evaluated by Tian (1990) and are
listed in Appendix C for completeness.

The elastostatic and elastodynamic displacements and stresses in piecewise

homogeneous media can be computed from the above expressions by using only the
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influence coefficients and the boundary parameters that are associated with the
sub-region in which the interior point is located.

Once the time history of displacements has been obtained at any interior point £ by
using (5-78), then the particle velocities at £ may be calculated using the simple

differencing scheme

um — u’,n_l

m_ 2 i
o] N (5-82)

Because the variation in time between each time step is linear, (5-82) is equivalent to

the analytical evaluation of particle velocities by using
N 3 . m
= i
W) = T3 6.2
m N 3 . 8 §
IIDMCI N (5-83)

in which ij and Ai-‘]- are the algebraic expressions given by (5-49) and (5-50),
respectively, and since By (t = 0) = A;; (¢t = 0) = 0.
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Chapter 6

Verification and Examples

A number of example problems are presented below to demonstrate the accuracy and
versatility of the elastostatic and elastodynamic boundary element implementations.
These problems include examples for both homogenous and piecewise homogeneous
materials. Both the elastostatic and the elastodynamic problem categories include
comparative studies with analytical solutions as well as with problems solved by
previous researchers. Also, a number of problems of general practical interest are
included. Those problems range from the elastostatic load responses of homogeneous
half-planes and layered materials to the generation of surface waves in an elastic
half-plane, wave propagation through layered soils, and a study of the surface
displacements generated by an underground explosion in a multi-layered soil. The
question of the causality of the elastodynamic boundary element scheme is addressed
through a simple case study of wave propagation around a v-shaped ditch in a
half-plane. Finally, the stability of the elastodynamic boundary element
implementation presented in this study is discussed briefly.

Most of the solutions in this chapter are presented in a normalized form, unless the
problem being studied was presented by a previous researcher in a given format. In

these cases the format of the previous presentation was kept for ease of comparison.
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6.1 Elastostatic Problems

In this section, a number of elastostatic problems are presented. These include the
loading response of an annulus inside a large plate, a strip loaded homogenous

half-plane, a layer resting on a half-plane and a three-layered material.

6.1.1 Annulus Inside a Circular Hole in a Plate

A simple example of a boundary value problem for a piecewise homogenous body is
shown in Figure 6.1. This problem was studied previously with boundary elements by
Crouch and Starfield (1983), who used a stress discontinuity boundary element
formulation with straight-line boundary elements and a constant variation of the
unknown stress discontinuities over each element. The region of interest consists of an

annulus a < 7 < b with a Poisson’s ratio v, and a shear modulus G inside a circular

hole of radius 7 = b in an infinite plate with a Poisson’s ratio vo and shear modulus Gj.

Figure 6-1: Annulus inside a circular hole in a plate.
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As shown in the Figure, the inside wall of the annulus is subjected to a normal

stress or» = —p, and the plate is unstressed at infinity. Crouch and Starfield (1983)

provide the analytical solution to this problem, by assuming that the continuity of

radial stress and displacement holds at the interface » = b. For the region a <r <5,

the radial and tangential stresses are

1

O = IR [(Paz/b2 —ﬁ) -(p-p) 02/T2]

1

% = Tgm [(Pa2/52 —25) +(p-p) ‘12/7‘2}

and for the region r > b, the stresses are

Opr = —pb*/r?

Ogg = +ﬁb2/r2

in which
2(1 — vy)pa?/b?

P AT+ GG =)A= /5)

(6-1)

(6-2)

(6-3)

In this study, a numerical solution to the problem was obtained for the same input

parameters as used by Crouch and Starfield (1983): .ul =1y =0.25, G;/G2 =2 and

p/Gy = 1073, The circular boundary r = a and each side of the interface r = b were

divided into 32 straight-line elements. Figure 6-2 shows the comparison of the

numerical and analytical results. The differences between the numerical and analytical

values of both the radial and tangential stresses were less than 0.25 percent. This

shows that circular and irregular geometries can be approximated well with a sufficient

number of straight-line elements.

6.1.2 A Strip-Loaded Half-plane

Many practical problems in linear elasticity involve bodies that can be idealized as

half-planes. Examples of such problems are layered pavément systems resting on an

idealized half-plane, and problems in mining and tunneling, where the boundary of a

half-plane represents the surface of the earth. The analytical solution to strip-loaded
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Figure 6-2: Radial and tangential stresses in annulus and plate.

half-planes is readily available in many texts on solid mechanics (see, for example,
Crouch and Starfield, 1983). This analytical solution is based on Flamant’s problem,
which is the problem of a line of concentrated force applied perpendicular to an

isotropic elastic half-plane. Flamant’s problem can be generalized by the principle of

superposition to obtain the solution of a strip load over a limited extent on a half-plane.

By recognizing that the influence of loads far away from their points of action is
often negligible, it is possible to approximate the loading response of a half-plane by
assuming that it is of limited spatial extent. To test this assumption, the numerical
model shown in Figure 6-3 was constructed. The model consists of 44 straight-line
elements each of length b = 10 m, along the top and bottom surfaces of the "idealized”
half-plane, and of 10 elements on each of its sides. The boundary conditions at the
bottom and side surfaces of the ”idealized” body were taken to be displacement
boundary conditions with both the normal and tangential displacement components at

each node specified to be equal to zero. The material properties are represented by
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Figure 6-3: Homogeneous half-plane.

Young’s modulus £ = 330 MPa and Poisson’s ratio v = 0.25, and the strip load was
taken to be p = 100 kPa.

The numerical results obtained for the problem were compared to the analytical
solution for a strip loaded homogeneous half-plane. Figures 6-4 and 6-5 show the
variation of vertical stresses with depth below the centerline and the edge of the of the
strip loaded area. The analytical solution for the vertical stress, oy, is given by (e.g.

Crouch and Starfield, 1983):
oy =L -b-y(@-a)/ri+y(z+a)/r] (6-4)

in which
1 =arctan Xz and 6, = arctan ;¥ (6-5)
7'f=(at—a)2-+-y2 and 3 = (z+a)® +y? :

79



04 06 08

— Analytical Sokstion
* Curent Study

4.

Figure 6-4: Vertical stress below centerline of strip loaded area.
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Figure 6-5: Vertical stress below edge of strip loaded area.
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The numerical results match the analytical solution very well, with the difference
between the numerical and analytical values less than 0.5 percent for both cases.
Therefore, it can be concluded that half-plane problems can be modeled for many
practical applications by assuming that the half-plane is of limited spatial extent.

It should be noted that volume-based numerical methods such as finite element
and finite difference methods also assume that the half-plane is of limited spatial
extent. These methods require many more elements than a comparable boundary
element discretization, because the internal volume of the body needs to be discretized,
whereas with boundary elements only the external surfaces of the body of interest need

to be discretized.

6.1.3 A Strip-Loaded Layered Half-Plane

As stated previously, many problems of practical interest in linear elasticity involve one
or more layers of finite thickness resting on a half-plane. To establish the validity of the
elastostatic boundary element formulation presented in this study for modeling such
layer problems, a number of comparisons were made with other existing numerical
boundary element formulations and existing analytical solutions. The ”idealized”
geometry used in this study is shown in Figure 6-6, which is essentially the same as the
geometry used for the homogenous half-plane problem discussed previously (Figure
6-3), except for the introduction of an interface at depth y = —30 m. Each side of this
interface is modeled a row of 44 straight-line elements, each of length 6 = 10 m.

Three distinct cases are studied: (1) the elastic constants for the layer and
half-plane are the same, namely E|, = F3 = 330 MPa and v; = v» = 0.25 in which the
subscripts 1 and 2 denote the layer and the half-plane, respectively, (2)

E) =0.25F5 = 330 MPa and v; = v = (.25, such that the half-plane is stiffer than the
layer, and (3) E| = 4E; = 1320 Mpa and v; = v = 0.25, in which the layer is stiffer
than the half-plane. This problem is modeled numerically by two boundary element
methods, - the boundary element formulation presented in this study, and a
formulation developed by Selcuk (1992), which assumes that the interface connects two

bonded half-planes where the interface continuity conditions are satisfied analytically.
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Figure 6-7 shows the discretization used for modeling the strip-loaded half-plane
with a bonded half-plane boundary element formulation. The surface of the idealized
half-plane is modeled with 44 displacement discontinuity elements, each of length
b =10 m. The normal and tangential displacement discontinuities are assumed to vary

quadratically over each element.
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E.v,
370m
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Figure 6-6: Strip-loaded half-plane.

Figure 6-8 compares the vertical stresses along the interface obtained with these
two boundary element formulations to the analytical solution given by (6-4). The
numerical results obtained by both boundary element methods compare favorably with
the analytical solution. Similarly, the variation of vertical stress with depth underneath
the centerline of the loaded area is shown in Figure 6-9 and Figure 6-10 for the two
formulations. Figure 6-9 shows the case for which the half-plane is stiffer than the layer
(Eq = 4E,). Figure 6-10 shows the stiff layer case (E; = 4E3). In both cases, the

difference in results between the two boundary element formulations is negligible.’
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Figure 6-7: Bonded half-plane model.
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Figure 6-8: Vertical stresses along interface.
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Figures 6-8 to 6-10 illustrate clearly that interfaces between two different piecewise
homogeneous regions can be modeled quite satisfactorily by either boundary element
formulation.

Looking at Figures 6-9 and 6-10, it is worth noticing how the vertical stress
dissipates more rapidly with deptn for the stiff upper layer case (Figure 6-10). To
illustrate this effect further, the vertical stresses along a vertical centerline underneath
the loaded area were obtained with the current numerical formulation for the three
cases £y = 0.25E, £y = E3, and E; = 4E;. The results shown in Figure 6-11, clearly
show that the higher the relative stiffness ratio (E;/E>) between the upper layer and

the half-plane, the more pronounced is the associated drop in vertical stress with depth.

6.1.4 A Three-Layered Soil System

The last example given in this study for the elastostatic boundary element formulation
is a three-layered problem. Figure 6-12 shows the geometry and the discretization of
each layer. Each side boundary is placed at £ = +170 m and is divided into 12
boundary elements with fixed boundary conditions at each node. The horizontal
boundary at y = —90 m is also assumed to be fixed. The mesh of 26 elements along
each interface has been chosen symmetric with respect to £ = 0 and is depicted at the
bottom of Figure 6-12. The loads on the half-plane are taken as p’= 150 kPa and

p"= 250 kPa and the elastic constants are v = 0.3, E; = 1.0 x 10° kPa and

Ey, = 5.5 x 10° kPa. The linear variation in the Young’s modulus with depth, depicted
in Figure 6-12 is approximated by assuming that the Young’s modulus for each layer is
the average of its values at the relevant interfaces.

This problem was first studied by Maier and Novati (1987), who used straight-line
boundary elements with constant variation in displacements and tractions across each
element. An interesting aspect of their analysis is that they specifically exploit the
chain-like pattern of the system, by developing a recursive formula which generates a
'stiffness matrix’ of the first n layers (from bottom) at the upper interface with the
subsequent layer (n = 1,...,L). This method is essentially a special case of a more

general method to deal with chain-like structures that was proposed by Linkov and
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Figure 6-11: Effects of relative stiffness on the vertical stress below centerline of a strip-
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Figure 6-12: A three-layered half-plane.
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Filippov (1991).

Figures 6-13 to 6-15 compare the results from the current numerical formulation to
the results reported by Maier and Novati (1987). Figure 6-13 shows the variation of
vertical stress o, along z = 0 and Figure 6-14 shows the variation of the horizontal
stress oz along £ = 0. The two methods show a close comparison for the variation in
vertical stress with depth, but the horizontal stress obtained by the two methods varies
considerably between the two methods. This difference in the horizontal stress profiles
can possibly be explained by the fact that Maier and Novati use constant boundary
elements which may not be appropriate for modeling horizontal stresses in layered
systems, and these horizontal stresses also turn out to be very sensitive to the
piecewise-constant approximations of the linear variation of Young’s modulus with
depth, as pointed out by Maier and Novati themselves.

Figure 6-15 shows the variation in vertical displacements uy along y = 0 (lower set
of curves) ’and y = —30 m (upper set of curves). The vertical displacements obtained
from the two numerical methods compare reasonably well to each other, even though
the current study results in slightly greater displacements than the constant boundary
element method of Maier and Novati.

It can be concluded from this example that the elastostatic analysis of layered
material can be conducted with reasonable accuracy for complex problems of realistic
geometries. Common examples of such problems are pavements and layered deposits

and formations of soil and rock.

6.2 Elastodynamic Problems

In this section, several examples and applications of the elastodynamic boundary
element implementation are discussed. A number of well-known examples are included
from the literature, as well as some new applications and examples that illustrate the

power and usefulness of the current approach.
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Figure 6-15: Variation of vertical displacements along y = 0 and y = -30 m.

6.2.1 Suddenly Loaded Half-plane

The half-plane shown in Figure 6-16 is initially at rest. Then at time ¢t = 0 a part of its
surface is disturbed by a vertical traction that is continuous in time and space, as
shown in Figure 6-17. The problem is modeled with 26 elements, each of length

Az = 40 ft. The elastic constants of the half-plane are £ = 2 x 10% 1b/in? and

v = 0.15. The longitudinal and shear wave velocities are c; = 3.288 x 10* in/sec and

c2 = 2.112 x 10* in/sec, and the load, p, = 1 x 10% Ib/in? has a rise time of

tr = 20 x 1073 seconds. The size of time step was taken as At = 0.005 seconds.

This problem was first solved with an elastodynamic time-domain direct boundary
element method by Mansur (1983). The boundaries were approximated by straight-line
elements and constant interpolation functions were used to approximate the variation
of the tractions and displacements over each boundary element. The temporal
variation between subsequent time-steps was taken to be constant for displacements
and linear for tractions. The spatial integrations were carried out numerically by using

Gauss quadrature and the time integrations were performed analytically. The interior
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stresses were obtained by a finite element type approximation. Triangular internal cells
were used and stresses at their centroids were computed from displacements which were
linearly interpolated inside each cell as a function of the displacements at the cell nodes.

Israil and Banerjee (1990a) also used a time-domain direct boundary element
method to solve this problem. The geometry was modeled with isoparametric quadratic
elements and linear temporal interpolation functions were used. Again, the spatial and
temporal integrations were evaluated numerically and analytically, respectively. It
should be noted that the formulation by Israil and Banerjee (1990a) does not allow for
exterior boundary value problems. Their formulation requires that all problems be
modeled as interior boundary value problems. To approximate exterior boundary value
problems, they introduce what they refer to as "enclosing elements,” which appear to
be some kind of non-reflecting boundary elements. Unfortunately, none of their
published work describes the mathematical details of these "enclosing elements.”

Figures 6-18 and 6-19 show comparisons with published results for the vertical
displacements at interior points F (80’, — 60’) and G (150°, — 10’) obtained by the
present formulation. Overall, the results from the current study give similar results to
other published results, except for the first arrival time of the longitudinal wave at
point G. Mansur (1983) reports the arrival time to be 0.62 seconds and Israil and
Banerjee (1990a) found it to be 0.27 seconds. The present solution also shows the
arrival time to be about 0.27 seconds which corresponds well with the physics of the
problem, namely the given distance to point G from the edge of the loaded area (908
in) and the given longitudinal wave velocity of 3.288 x 10% in/sec. It should be noted,
though, that it is difficult to determine an exact value for the arrival time for this
problem, because of the rather long rise time (¢,) of loading.

The vertical stresses, oy, at points B (75’, — 75’) and C (5, — 75’) are shown in
Figures 6-20 and 6-21. Again, the current numerical results compare reasonably well
with the other published results, except for the increased waviness at late times in the
solution by Mansur for both displacements and interior stresses. This behavior could
possibly be explained by the fact that constant elastodynamic boundary element

formulations have been shown to lead to numerical instabilities at late times (see, for
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Figure 6-18: Vertical displacments at point F(80’, -60’).
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Figure 6-19: Vertical displacements at point G(150’, -10).
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Figure 6-21: Vertical stress at point C(5’, 5’).
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example, Tian, 1991; Siebrits, 1992).

6.2.2 Triangular Open Trench in a Half-plane

The issue of causality of elastodynamic time-domain boundary element methods has
been a topic of discussion in the literature for the last decade. Siebrits (1992) defines
causality as the relation between a cause and its effect. In a properly implemented
time-domain elastodynamic computer code, the receiver point cannot experience any
dynamic motion until the longitudinal wave arrives from the nearest source position. If
an obstacle such as a ditch or a cavity is located directly between a source and a
receiver point, then the receiver point should not experience any dynamic effect from
the source position until the wave has traveled around the ditch or cavity.

During their work on wave diffraction by trenches with the aid of a time-domain
boundary element method, certain researchers have persistently observed an apparent
violation of the causality principle in their results. Antes and von Estorff (1987) were
the first to observe this apparent violation of causality in the wave diffraction problem
shown in Figure 6-22. They reported significant numerical discrepancy in the vertical
displacements at point B in Figure 6-22 depending on whether the problem was
discretized as a single or a two-region model. Figure 6-23 shows these reported
differences in the vertical displacement at point B. Antes and von Estorff (1987)
observed that the response at point B due to an impulse load at point A started earlier
than at the time required for the longitudinal wave to travel around the ditch from A
to B. They also found that this causality problem disappears if the domain is modeled
as a two region system. The same phenomenon was observed by Triantafyllidis and
Dasgupta (1990) and Leung et al. (1990) in the frequency domain, and the difficulty
was again circumvented by substructuring. Von Estorff and Kausel (1989) and von
Estorff and Prabucki (1990) were able to obtain causal solutions with a hybrid
boundary element and finite element method for trench diffraction problems, thus
leading them to conclude that the causality problem is only associated with boundary
element formulations.

Antes and Meise (1990), von Estorff et al. (1990) and Israil and Banerjee (1990a),
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through anti-plane and plane frequency and time-domain boundary element
formulations. concluded that any violations of causality reported previously are the
results of insufficient discretization of the boundary and the use of low order elements.
Tian (1990) and Siebrits (1992) also concluded that boundary element methods can
model non-convex domains and that methods that violate causality simply do not have
sufficiently accurate integrations along the boundaries. However, Triantifyllidis (1993)
brought up the causality problem again in a study where both direct and indirect
boundary element methods were applied analytically to the problem of diffraction of
SH-waves by a cylindrical cavity in an infinite space. The results of the indirect
boundary element method were identical to the analytical solution, but the results
obtained with the direct boundary element method were not. This conclusion is in
direct opposition with the results obtained by Tian (1990), who used the time-domain
direct boundary element formulation. Tian (1990) used quadratic and linear spatial
and temporal interpolation functions, respectively. All integrals were carried out
analytically, and the boundary element formulation was tested on a non-convex
domain. The results clearly show that the direct boundary element method does not
violate causality.

Because of all the previous discussion in the literature, it was felt that the current
implementation should be used to model a non-convex domain problem. The problem
of a v-shaped ditch in an elastic half-plane shown in Figure 6-22 provides a good check
on the issue of causality. The half-plane has a mass density p = 2000 kg/m3, a
Poisson’s ratio v = 0.33 and a Young’s modulus £ = 2.66 x 10° kPa. The
corresponding propagational wave velocities are ¢; = 443.9 m/s and ¢z = 223.6 m/s.
The time step in this study was taken to be At = 0.002815 seconds.

Israil and Banerjee (1990a) found a small discrepancy at late times in the time
history of the vertical displacement at point B, which they attributed to the limited
spatial extent of the original discretization by Antes and von Estorff (Figure 6-22).
They suggested that the interface discretization for the two-region case should be
extended to such a distance as is reached by the longitudinal wave during the desired

time-history. The current study extends the interface and surface discretizations .
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Figure 6-24: Discretization of v-shaped ditch used in this study.

beyond the distance reached by the longitudinal wave during the desired time-history
(see Figure 6-24). The discretization used in this study is shown in Figure 6-24 for the
two region case. The discretization used for the single region case is identical, except
that the interface between regions 2, and Q; is removed. Figure 6-25 compares the
time history of vertical displacements at point B for both the single and two region
cases. The arrival time of the longitudinal wave from the right end of the loaded
element to point B is about 0.0474 seconds and it is correctly produced for both
discretization cases. The time histories at later times for both cases also are almost
identical.

It is therefore concluded that a properly implemented direct boundary element
formulation satisfies the principle of causality for non-convex domains and that the
results do not depend on whether the mesh is of a single or multiple region. The

so-called causality problem is a numerical artifact and certainly disappears with a
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Figure 6-25: Time history of vertical displacement at point B using extended discretiza-
tion pattern.

proper implementation in which both the spatial and temporal integrals are evaluated

analytically.

6.2.3 Lamb’s Problem

This example illustrates the generation of a Rayleigh wave in a half-plane that is
suddenly loaded with a concentrated line load. A complete analytical solution was
presented by Lamb (1904) for the vertical component of the surface displacement, but
the analytical solution for the horizontal component was given only until the arrival of
the shear wave. Lamb’s (1904) formulation of the horizontal and vertical displacements

due to a concentrated vertical load @ (t) can be written as

ug = —gQ(t - cx)

R N GEr N G
7G J (26% - b2)* + 1664 (62 — a?) (4% - 62)

Q(t—0z)dd (6-6)
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where a = 1/c;, b= 1/c2 and ¢ = 1/cg, in which ¢, ¢z and cg denote the longitudinal,
shear and Rayleigh wave velocities. The first term in the horizontal displacement

component also contains the following term,

_ K2 (2% - K?)°
=) R s (- R R)

(6-8)

where h? = p?a?, K? = p?b® and k2 = p?c?, in which p denotes the frequency of the
disturbance.

Right after the shear wave arrives at the point of interest, all horizontal
displacement wave activity ceases, until the arrival of the horizontal Rayleigh wave
component, which is represented by the first term in (6-6). This solitary Rayleigh wave
of short duration is said to be of unchanging type, because it does not decay with
distance away from the source. This non-decaying nature makes it very difficult to
model with any numerical method, because the solution matrices tend to become
ill-conditioned, with off-diagonal elements of about the same size as the diagonal terms.
Numerical treatment of this problem was attempted by Israil and Banerjee (1990b).
Unfortunately, the authors did not provide information about problem discretization,
load magnitude and load duration, time step and body wave velocities, so it is not
possible to compare the current implementation to their results.

In this study, the elastic half-plane shown in Figure 6-26 is used to approximate
Lamb’s problem. The half-plane is discretized with 50 equal-size elements of length
b= 10 m. To approximate a line load on the half-plane, the load p(t) is applied as a
triangular load over two elements, with an apex value pg = 100 kPa applied at z = 0.
Similarly, to approximate a delta pulse in time, the load is assumed to have the

triangular load distribution shown in Figure 6-27. The rise time of the load is ¢, = 0.02
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seconds and the size of the time step is At = 0.005 seconds. The elastic constants for
the half-plane are £ = 330 MPa, v = 0.25 and the mass density, p = 1783.9 kg/m?.
The wave velocities are ¢; =471 m/s and ¢; = 272 m/s. Field point displacement
vectors are also presented in Appendix D for a field point window defined by the
following four corner nodes: (60m, —2m), (150m, —2m), (150m, —32m) and
(60m, —32m). This window was deemed far enough from the origin so that the effects
of the applied load would be "felt” to be closer to the delta pulse load approximation,
discussed previously. At distances very close to the origin of the applied load, this
assumption is clearly not valid, because of the finite spatial extent of the applied load.

Figures 6-28 and 6-29 show the surface displacements obtained by the current
implementation at a normalized distance /b = 12. This distance was assumed to be
far enough away from the point of load application for the approximation of a suddenly
applied line load to be reasonable. The normalization parameter @ is simply the
magnitude of the triangular load. Figure 6-28 shows how the horizontal disturbance at
the point of interest begins after a time t = z/c;, which is the time it takes the
longitudinal wave to travel that distance. The disturbance lasts until time ¢t = z/cs,
which is the time it takes the shear wave to travel to the point of interest, and then
ceases, until the arrival of the non-decaying horizontal Rayleigh wave component, after
which the horizontal displacements return to zero.

Figure 6-29 shows the vertical displacements at the point of interest. The most
important part of the vertical displacement component is that corresponding to
t = z/cgr, when the integrand in the second term in (6-7) changes signs by passing
through infinity. This is the epoch of the main shock; the relatively minor disturbance
which starts at time ¢t = z/c; leads continuously up to this, and only dies out gradually
after it. The results shown in Figure 6-29 show good agreement with Lamb’s solutidn,
considering the fact that the analytical solution for the vertical displacement
component predicts a singularity ﬁpon the arrival of the Rayleigh wave at the point of
interest, and considering also the difficulty in matching the loadings. It should be
noted that at later times the numerical results match the analytical results quite well,

despite the primary wave activity having reached the edges of the discretized area quite
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some time previously.

The displacement vectors shown in Figures D-1 to D-11 illustrate the expected (see
e.g. Eringen and Suhubi, 1975) vertically elongated counterclockwise elliptical
movement of points within the body of interest as the Rayleigh wave passes through
the field point window. After the Rayleigh wave has passed, the horizontal
displacement component disappears as expected and the downward vertical component

illustrates the slow decrease in magnitude observed in Figure 6-29.

6.2.4 Selberg’s Problem

This example deals with the load response of a cylindrical cavity, shown in Figure 6-30,
which is suddenly loaded with a pressure loading. The cavity has a radius r = a and
the applied pressure load is expressed as p(t) = p,H (t), where po/G; = 10~%. The
material properties used in this study are p = 2700 kg/m3, longitudinal wave velocity,
c1 = 5367 m/s, shear wave velocity ca = 3287 m/s, Poisson’s ratio v = 0.20 and shear
modulus G = 29.17 x 10% kPa. The time step At was selected so that the longitudinal
wave would travel exactly one-quarter of an element length at each time step. This can
be expressed by a dimensionless parameter

At

a

QL=05= (6-9)

where a; = element half-length. The boundary of the cavity was discretized by 16
straight-line elements and the number of time steps was 85.
Selberg (1952) presented an analytical solution for the hoop stress along the wall of

the cylindrical cavity. The hoop stress ogg can be written as
2(A +
00 = %Uzz — Opr (6‘10)

where )\ and u are Lamé’s constants and o, is the axial stress acting in the direction
along the length of the cavity and o, is the radial stress. Using Laplace transforms,

the analytical expressions for the radial and axial stresses can be written in terms of
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Figure 6-30: Suddenly loaded circular cavity.

the n-th order Hankel functions of the first kind H} (£)as
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where J and 3 denote the imaginary and real parts, and
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F (&) = (A +2p) Ko (§) + 2u/6K1 (€) (6-14)

and g = a + 10 is the solution of the equation F (£) = 0 in the half-plane 3 > 0. To
obtain a solution for the tangential stress at the wall of the cavity, Selberg (1952)
approximated the root £ by numerical iteration.

Figure 6-31 shows a comparison between the current numerical results and
Selberg’s solution. The normalized time c;t/a presents the time that it takes the
compressional wave to travel multiples of the distance a. The results show good

agreement with the Selberg solution (solid line), both at early and late times.

— Seberg’s Solution
-0.2 o Numerical Resuits -
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Figure 6-31: Hoop stress at the wall of a single cavity.

6.2.5 Suddenly Loaded Annulus

This example extends the problem shown in Figure 6-1 to dynamics. The region of
interest consists of an annulus a < r < b with Poisson’s ratio v and shear modulus G

inside a hollow circular hole of radius r = b in an infinite plate with Poisson’s ratio v
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and shear modulus G2. Insight into the dynamic response of this problem may be
obtained from Selberg’s problem discussed previously, which can be viewed as a special
case in which the material properties of the plate and the annulus are the same. Also,
(6-1) to (6-3) provide the static solution for the problem, to which the dynamic
solution should tend at later times.

The cases of G, /G2 =1, G1/G2 = 2 and G, /G, = 4 were studied. In all cases the
material properties of the plate were taken to be the same as the material properties
used in the Selberg problem, namely, longitudinal wave velocity, ¢; = 5367 m/s, shear
wave velocify ¢z = 3287 m/s, and shear modulus G5 = 29.17 x 10® kPa. The Poisson'’s
ratio v = 0.20, and the mass density p = 2700 kg/m3 were assumed to be the same for
both the plate and the annulus. The time step At was again selected as 0.5a;/cmax,
where q; is the element half-length and cpax is defined as the maximum compressional
wave velocity in the problem. The circular boundary 7 = a and each side of the
interface r = b were divided into 16 straight-line elements, and the number of time

steps was again taken as 85.

Case I: G1/G; =1

This particular case allows for an evaluation of the effects of introducing an artificial
numerical interface at r = b. First, the time histories of hoop stresses and radial
displacements are evaluated for the cases with and without a numerical interface.
Second, the effects of the rise time (¢,) of loading are evaluated for the numerical
interface case.

Figure 6-32 shows the hoop stress at the circular boundary r = a for the cases with
and without (solid line) a numerical interface. The case without a numerical interface
is exactly the same as that presented for the Selberg problem in Figure 6-30 and the
applied pressure p(t) at the circular boundary r = a is applied in the form of the
Heaviside ramp load, shown in Figure 6-33. Therefore, it can be concluded that the
introduction of a numerical interface at » = b does not appreciably affect the hoop
stresses at the boundary r = a. Similarly, Figure 6-34 shows the time history of
normalized radial displacements at r = b, due to a suddenly applied Heaviside load at
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Figure 6-32: Hoop stress at the circular boundary r = a.

r = a. The results show that the introduction of a numerical interface at + = b does not
significantly affect the radial displacements at r = b.

To evaluate the effects of the rise time ¢., the hoop stress at r = b was compared for
the two loading cases shown in Figures 6-33a and 6-33b. The first case assumes that
the pressure applied at the circular boundary r = a is in the form of a Heaviside ramp
load (Figure 6-33a), whereas the second case (Figure 6-33b) assumes that the pressure
is applied as a ramp-step load with a rise time of one time step (¢, = At). The results
of the comparison are shown in Figure 6-35. Small perturbations are seen in the
Heaviside load response (solid line) at normalized times c;¢/a = 3,5 and 7, whereas
these perturbations are not seen in the ramp-step load case (broken line). These
perturbations are likely due to a minor wave reflection activity at the artificial
interface, indicating that the use of linear time variation of tractions and displacements
may not work well for multiple domain problems with a suddenly applied Heaviside
loading at the boundary. However, Figure 6-35 clearly illustrates that the loading
response due to a Heaviside load can be approximated with a load that is applied with

a rise time of one time step. It is of interest to note that Love (1906) also concluded
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Figure 6-34: Radial displacements at the interface r = b.
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Figure 6-35: Hoop stress at the material interface r = b.

after an extensive study of the three-dimensional displacement fundamental solution
that it yields correct results only when the input quantities are continuous at the
propagating wave front. This also implies that if the input excitation is a Heaviside

step load, then it must be modeled as a ramp-step load with a finite rise time.

Case II: G1/G2 =2

For this case, the ramp-step loading (Figure 6-33b) was used. The material parameters
were G = 29.17 x 10% kPa, G, = 14.585 x 10% kPa and the Poisson’s ratio was v = 0.2
for both regions. The wave velocities were ¢; = 5367 m/s and c; = 3287 m/s for the
annulus, and c¢; = 3795.5 m/s and c; = 2324.2 m/s for the outer plate. The time was
divided into 85 time steps, each of size 0.5a;/cmax-

Figures 6-36 and 6-37 show the normalized hoop stress at both sides of the material
interface at radial distance r = b. Both cases show a small perturbation in the solution
at normalized times c¢;t/a = 3,5 and 7, indicating waves that have reflected off the

r = b interface and traveled to the circular boundary r = a and back to r = b. This
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Figure 6-37: Hoop stress at r = b+.
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wave reflection phenomenon can also be seen in Figure 6-38, which shows the
normalized radial displacement at the interface. It should be noted that in all three
cases, the dynamic solution approaches the static solution at later times. Finally,
Figure 6-39 shows a comparison of the normalized hoop stress on each side of the
material interface r = b. The distinct perturbations at normalized times cit/a = 3,5

and 7 are quite distinct and clearly take place at exactly the same times.

o~8 Y ¥ 4 Ll 1 T ¥ T

uGy/(pa)

C1t/ a

Figure 6-38: Radial stress at the interface.

Case III: G, /G2 =4

Figures 6-40 and 6-41 show the normalized hoop stress at both sides of the material
interface at radial distance r = b. As in the G;/G2 = 2 case, the dynamic solution
tends to the static solution at later times, but the perturbations at normalized times
cit/a = 3,5 and 7 are now more distinct than for the G;/G2 = 2 case. The normalized
radial displacements shown in Figure 6-42 also show small perturbations at these times,
even though this reflection effect is much harder to detect for the displacements.

Figure 6-43 shows a comparison between the normalized hoop stress on each side of
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Figure 6-42: Radial stress at interface r = b.
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the material interface » = b. It is interesting to note that as the material properties
between the annulus (region 1) and the plate (region 2) diverge, the dynamic behavior
in the stiff annulus (solid line) becomes more abrupt as compared to the softer plate
(broken line), and the jump in hoop stress at the interface grows larger. This effect is
illustrated in Figures 6-44 and 6-45, which show respectively the normalized hoop
stresses and radial displacements for all three cases, namely G,/G2 = 1, G1/G3 = 2
and G,/G2 = 4. The initial negative stress, corresponding to a dynamic compression
effect, shows a significant increase with the ratio of the shear moduli (G1/G2) between
the annulus and plate. The dynamic reflection phenomenon at normalized times
cit/a = 3,5 and 7 also increases significantly with an increase in the G,/G. ratio. It
should also be observed that as the G,/G3 ratio increases and the dynamic reflection
behavior becomes more distinct, the dynamic stresses and displacements approach the
static solution more rapidly at later times, because the waves lose energy at a faster
rate due to increased interference and scattering activity.

It can be concluded that the current numerical implementation is capable of
modeling complicated multi-domain geometries with straight-line elements and that

the results approach the static solution as time tends to infinity.

6.2.6 Wave Propagation Through Layered Material

Realistic description of both natural and man-made materials should include changes
in material stiffness with depth. Soil and rock profiles can almost never be assumed to
be completely homogeneous with depth. Rather, the profiles are stratified with softer
layers overlying stiffer ones, or sometimes there is a hard crust overlying softer
material. Examples of man-made materials include concrete and z‘asphalt pavements,
where a stiff layer of concrete or asphalt overlies a softer base material. The presence of
layers of finite thicknesses affects the dynamic loading response significantly. As
explained in Section 3.4.3, waves originating from a loaded boundary will reflect and
refract at the interface between layers and the resulting surface and interface waves will
become dispersive in character. Waves are considered to be dispersive when the phase

velocity depends on the frequency. Correspondingly, Rayleigh waves traveling along the
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Figure 6-43: Comparison of hoop stresses at the interface.
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Figure 6-44: Comparison of hoop stresses at interface.
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Figure 6-45: Comparison of radial displacements at interface.

surface of a half-plane and Stoneley waves moving along the interface between two
homogenous bonded half-planes are non-dispersivé, because of the absence of a length
dimension in the problem.!

The present study involves a homogenous half-plane underlying a layer of finite
thickness H. The geometry and time history of loading for the problem are shown in
Figure 6-46. The depth of the upper layer is H = 2b, where b is the length of each
surface and interface element. Both the surface and each side of the interface are
modeled with 48 straight-line boundary elements, each of length b = 10 m. The ratio of
the shear moduli G1/G> is varied, with all other properties remaining the same in the
two layers. The Poisson’s ratio and mass density for both layers are v = 0.25 and
p = 1783.9 kg/m3. The applied transient load shown in Figure 6-46 has a finite rise
time ¢, = 0.02 seconds, with a total time of applied loading of 3¢.. The number of time

'It should be noted here that it is only possible to obtain dispersive in-plane surface waves for
plane strain elastodynamic problems. It is not possible to obtain Love waves, which are out-of-
plane dispersive surface waves, despite claims to the contrary by Israil and Banerjee (1990b).
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Figure 6-46: Discretization of layered half-plane.

steps for all cases was 220, with each time-step of size At = 0.005 seconds. The ratio of
§hear moduli was taken as G1/G2 = 0.2,0.5,1,2, 5, ranging from a very stiff half-plane
to a very stiff layer. The corresponding values for the dimensionless parameter Q; =
CmaxQt/a; (Cmax = max(cy,¢;), where ¢; and ¢; denote the compressional wave
velocities in the layer and the half-plane) are @; = 1.0535,0.6663,0.471,0.6663, 1.0535.

In the current study, the vertical displacements for the case of a stiffer half-plane
were monitored at Stations P (z/b = 3) and Q (z/b = 10). The results are shown in
Figures 6-47 and 6-48 in terms of normalized vertical displacements versus normalized
time cot/b, where the value of ¢co corresponds to the shear wave velocity in the layer.
The wave velocities in the layer are ¢; = 471 m/s and c¢; = 272 m/s. The wave

velocities for the half-plane corresponding to the various G; /G ratios are

G/Ga=1: €y =471.0m/s; & =272.0m/s

Gi1/G2 =1/2: ¢ =666.3 m/s; Co=2384.7m/s

G1/G2 =1/5: ¢ =1053.5 m/s; ¢z =608.3 m/s
The results show that as the half-plane becomes stiffer, the wave activity in the
overlying layer increases until the displacement becomes oscillatory for the case
G1/G2 = 1/5. Also, Figure 6-48 illustrates how the waves reach Station @ at

progressively earlier times as the lower medium becomes stiffer, because the waves in
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Figure 6-47: Vertical displacements at point P (x/b = 3) for the case of a stiffer half-
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the half-plane will travel along the interface faster than the waves in the upper layer
and arrive sooner at Station (. These waves also interfere with the slower moving
waves in the upper medium, resulting in a change in the initial form of the time-history
of displacements at location Q.

To illustrate how the displacements change with horizontal distance between
Stations P and @), the time history of both horizontal and vertical displacements for
the representative case of Gy /G2 = 1/5 is presented in Figures 6-49 and 6-50. The
results show how the amplitude and the frequency of oscillations in the horizontal
displacements increase with the distance between Stations P and Q. The frequency of
oscillations in the vertical component of displacements also increases with distance
from Station P to Station @, as shown in Figure 6-50, but the amplitude decreases.

The vertical displacements for the case of a stiff layer overlying a softer half-plane
are shown in Figures 6-51 and 6-52. The shear wave velocity in the normalized time
Cat/b is now the shear wave velocity in the half plane. The wave velocities in the
half-plane are ¢; = 471 m/s and & = 272 m/s. The wave velocities for the layer

corresponding to the various G1/G, ratios are

G1/G2=1: ¢ =471.0 m/s; e =272.0 m/s
G1/G2=2: c¢;=666.3m/s; co=2384.7m/s
G1/G2=5: ¢, =1053.5 m/s; c2 =608.3 m/s

The results show that as the overlying layer becomes stiffer the time histories of
displacements at Stations P and ) become less sharp, and more spread out in time.
Also, Figure 6-52 illustrates how the waves reach Station @ at progressively earlier
times as the layer becomes stiffer. The waveforms at early arrival times do not include
the interference effect shown in Figure 6-50, because now the waves traveling in the
underlying half-plane are slower than the waves in the layer. However, a slight increase
in oscillations at later times for the case G1/G2 = 5 can possibly be explained by
refractive effects from the half-plane.

A significant difference in the observed behavior ofAthe response between the stiffer
half-plane and stiffer upper layer cases can be observed from Figures 6-49 to 6-52. The

stiff overlying layer cases do not show the oscillatory behavior that is observed for the
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Figure 6-51: Vertical displacements at point P (x/b = 3) for the case of a stiffer upper
layer.
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Figure 6-52: Vertical displacements at point Q (x/b = 10) for the case of a stiffer upper
layer.
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stiff half-plane case in Figures 6-49 and 6-50. To explain this difference in response
adequately, it is necessary to review some of the basics of wave scattering phenomena

in elastodynamics. A detailed discussion of the very complicated mathematical

expressions involved is beyond the scope of this study. Interested readers can find some -

of the highlights of the necessary mathematical derivations in Eringen and Suhubi
(1975) and Achenbach (1973), and a detailed description of the mathematics in Ewing
et al. (1957, Section 3-1).

Surface waves occur under plane strain conditions because of a constructive
interference between dilatational and shear waves (P- and S-waves). To understand the
behavior of surface waves it is necessary to first review the scattering behavior of
incident plane P- and S- waves in the presence of a material interface. In the simple
case where the incident wave is either a pure P-wave or S-wave, the interface will
generate four waves of two types propagating into each medium. Each incident wave
will generate reflected and refracted P- and S-waves. Correspondingly, if the incident
wave is composed of P- and S-waves, then eight waves will be generated at the
interface. These refracted and reflected waves are always excited in their totality if the
following inequality holds:

C1>C>7T >0

where c; and c; are the wave velocities in the material containing the incident wave and
€1 and ¢, are the wave velocities in the adjacent medium. This inequality guarantees
that all angles of reflection and refraction are real. If two media violate this inequality,
some, or all, of the refracted waves are extinguished beyond a certain critical angle of
incidence, which depends on the relative magnitude of wave velocities in the two media.

To give an example, the case of a stiffer half-plane is of particular interest, namely
Ct>C>c >y

Then, it can be shown (Eringen and Suhubi, 1975) that an angle of incidence i greater
that a critical angle i, where

sin icr = C]_/E2
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results in all angles of refractions being imaginary and both components of the incident

wave will be totally reflected (see Figure 6-53). This special case is a condition for the

> interface

Figure 6-53: Total internal reflection.

existence of oscillatory surface waves, sometimes tefmed generalized Rayleigh waves,

which are generated by the constructive interference of plane waves trapped in the

overlying (softer) layer and undergoing multiple and total reflections at the free surface
and the interface. Therefore, surface waves in a layered half-plane can only occur if the
velocity of wave propagation along the layer is less than the wave velocities of the
substratum. Physically significant results may be obtained only when 2; > ¢;. If this is
the case, then the layer undergoes oscillatory motion in the vertical y-direction
propagating in the horizontal x-direction with a surface wave velocity c, which is

confined to the following inequality:
C1>C>c>c >0

The disturbances in the layer decay exponentially with depth in the underlying
half-plane. Hence, the generalized Rayleigh wave is confined to the upper layer. This

surface wave is dispersive, unlike ordinary Rayleigh waves in a half-plane. It should be
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noted that the dispersion is simply an interface phenomenon and not a physical
property of the material and it is strictly a result of introducing a finite length scale in
the form of a finite layer thickness into the problem.

With this background, the wave scattering behavior of the cases shown in Figures
6-49 to 6-52 can be explained. The first case of G1/G3 = 1 shows a non-dispersive
Rayleigh wave, because of the absence of a finite length scale or a characteristic length,
such as a finite layer thickness. This is verified by the observation in Figures 6-49 to
6-52 that the shape of the wave form is not altered significantly as it travels from
Station P to Station Q. Likewise, the case of G1/G> = 1/2 does not meet the
requirements for an oscillatory surface wave to occur, because ¢; > ;. Rather, some
refraction into the half-plane will occur, which could possibly explain the interference
observed at early times in Figure 6-50. The remaining stiffer half-plane case, described
by G1/G2 = 1/5, fulfills the requirement for total reflection and should therefore show
the oscillatory surface wave behavior observed in Figures 6-49 and 6-50.

The stiff layer case G1/G2 = 5 does not fulfill the requirements for an oscillatory
surface wave to be generated, but all reflected and refracted waves should always be
excited in their totality. Similarly, the case G1/G2 = 2 should not show any oscillatory
surface wave effect, but some reflection and refraction will take place. Because of the
wave scattering at the interface for these last three cases, energy associated with the
refracted waves will be lost from the upper layer, going into the half-plane. This energy
transfer away from the layer could possibly explain the observed reduction of
displacement amplitudes in the upper layer, shown in Figures 6-51 and 6-52.

Because of the rather complicated nature of the case G;/G2 = 1/5, the time
histories of displacement and velocity vectors were found to be of interest. The field
point window is defined by the following four corner nodes: (0m, —2m), (120m, —2m),
(120m, —42m) and (Om, —42m). Figures D-12 to D-24 show the time history of
displacement vectors. Most of the displacement activity takes place in the upper layer,
which is consistent with what should be expected for the case of total internal
reflection. It is interesting to note the sharp turn in the displacement vectors from

vertical right underneath the load to almost horizontal along the material interface for
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time steps 12 and 15. At time step 21, the surface oscillation observed in Figures 6-49
and 6-50 is clearly visible in the displacement vector plots. This surface oscillation is
mostly confined to the upper layer and manifests itself in clearly oscillatory wave-like
pattern that becomes quite visible at time step 30 and beyond. Similar oscillatory
behavior is noticeable in the velocity vector plots shown in Figures D-25 to D-37. The
velocity vectors are almost only noticeable in the upper layer, which again is consistent
with what is expected for the case of total internal reflection.

It can be concluded from this example that the present numerical formulation is
capable of modeling the complicated wave interaction phenomena associated with the

scattering of waves in layered material.

6.2.7 Underground Explosion in a Two-Layered Rock

This final example deals with the surface vibration of a rock mass due to an
underground explosion. The rock is modeled by an elastic rock layer overlying an
elastic half-plane. The explosion is simulated by a suddenly applied pressure on the
walls of a cylindrical cavity in the half-plane. The problem geometry and the time
history of the applied pressure are shown in Figure 6-54. The surface and each side of
the interface are modeled with 30 elements each of length 10 and the wall of the cavity
is modeled with 16 straight-line elements. The unitless material properties (taken from
a study by Israil and Banerjee, 1990b) are as follows:

Top layer: G = 647,200, vy = 0.35, p; = 3.25, c; = 928.9, cp = 446.2

Half-plane: G = 1,991,150, v = 0.30, p2 = 2.85, ¢; = 1563.7, cp = 835.8

The number of time steps was 175, each of size At = 1.208q; /Cmax, Where
Cmax = 1563.7. The time history of the vertical displacements is monitored at three
selected points 4 (0,0), B (2a,0) and C (4a,0) on the free surface, where a = 10 is the
radius of the cavity. The corresponding results for the horizontal displacements are
monitored at points B (2a,0) and C (4a,0).

This problem was first solved by a time domain boundary element method by Israil
and Banerjee (1990b), in which a higher order boundary element formulation was used

with isoparametric elements and with all integrals evaluated numerically. The
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Figure 6-54: Underground explosion in a two-layered soil.

semi-infinite region was modeled as a closed domain with non-reflecting ”enclosing
elements” at an unspecified distance away from the boundaries of the problem. Figures
6-55, 6-56 and 6-57 compare the vertical displacements at Stations A and C and the
horizontal displacements at Station C to the results obtained by Israil and Banerjee
(1990b). The current results show very close agreement with the solution obtained by
Israil and Banerjee (1990b). Again, it should be pointed out that the results are not
significantly affected by the use of straight-line elements to model the boundary of the
hole.

Figure 6-58 shows the vertical displacements at Stations A, B and C obtained by
the current numerical implementation. The corresponding results for the horizontal
displacements at Stations B and C are presented in Figure 6-59. The results show that
the vertical displacements attenuate with distance as expected. However, the

horizontal displacements do not attenuate significantly with distance, and at Station C

126



Vertical Displacement

Horizontal Displacement

0.05 T T T T
—— israll and Banerjes
0.04 === Current Study -
0.03 4
'-"\
002 | / \ ]
/ \
/
001} / \ 1
/ \
_/ )
0= \\u.. ,,,,,,,,, 7
~a oLy
00 =65 o 0B 020 025
time (seconds)
Figure 6-55: Vertical displacement at Station A.
0-05 T T i ]
== lsrail and Banerjes
0.04 -==- Current Study 9
003 | 4
0.02 | ~ 4
/ \
!/ \
/ \
001} / \ -
/
//
0 t=e—— \ ot
\
N
~001 0 0.05 0.10 0.15 0.20 0.25

Time (Seconds)

Figure 6-56: Vertical displacement at Station B.
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Figure 6-57: Vertical displacement at Station C.
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Figure 6-58: Vertical displacements at Stations A, B and C.

128



0.05 e —r— Y T
— Station B

L~ 004r -- Statin C -
c
(V]
£
$ 003} .
=
3
Q 002 = P i -1
-]
ey
§ oo
N
2

00605 ol oB 020 025

Time (Seconds)

Figure 6-59: Horizontal displacements at Stations B and C.

the peak horizontal displacement is significantly higher that the corresponding vertical
component, which clearly illustrates the complexity of scattering problems in layered
and piecewise homogeneous media.

The time histories of displacement and velocity vectors are presented in Appendix
D for a field point window defined by the following four corner nodes: (0, —2),
(120,-2), (120, —42) and (0, —42). Figures D-38 to D-52 show how the displacements
radiate away from the underground cavity, right after the explosion, until the wave
front reaches the surface. Once the wave front has reached the surface, circular to
slightly elliptical counterclockwise eddies are gradually formed in the upper layer,
propagate along the surface and eventually disappear out of the field point window as
expected. Another interesting point is how the velocity vectors shown in Figures D-53
to D-67 change their direction towards the hole as the magnitude of the applied load
begins to decrease after time step 40. Both the displacement and velocity vectors show
how the horizontal displacements and velocities become more and more dominant in
comparison with their vertical components as the distance from the hole is increased.

This is consistent with the observations made in Figures 6-58 and 6-59 that show how
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the vertical displacements at the surface attenuate with distance, while the horizontal

displacements do not attenuate significantly with distance away from the hole.

6.3 Numerical Stability and the Size of Time-Step

Little discussion appears in the literature regarding the stability properties of
elastodynamic boundary element methods. This lack of analysis is somewhat puzzling
given the relatively large number of publications discussing the stability properties of
both finite element and finite difference methods. This general lack of detailed stability
analysis may be explained partly by repeated suggestions by a number of workers, such
as for example, Ahmad and Banerjee (1988),and Israil and Banerjee (1990a, 1990b),
that implicit time-marching formulations in boundary element methods are
unconditionally stable. This is an erroneous conclusion as shown by the results
obtained by Siebrits (1992) and Loken (1992). Rather, it appears that instabilities have
been observed in virtually all elastodynamic time-domain boundary element
implementations to date.

Numerical instabilities occur in various direct and indirect boundary element
formulations. The direct boundary element formulations presented by Mansur (1983),
Antes (1985) and Fukui (1986) illustrate increased oscillations at late times, indicating
instabilities for some of their results. The results obtained by Tian (1990) and Wang
(1991), who both use a direct formulation with quadratic spatial and linear temporal
elements, and analytical integrations for all integrals, show instabilities at later times.
A more recently published direct boundary element code, QUADPLET, by Dominguez
(1994), which uses isoparametric quadratic spatial and linear temporal elements, also
has been shown to go unstable (Siebrits and Peirce, 1995). Elastodynamic indirect
boundary element formulations by Mack (1991) and Siebrits (1992) have been observed
to have numerical stability problems for both three-dimensional and two-dimensional
displacement discontinuity formulations. Also, Tian (1990) and Loken (1992) noted
numerical instabilities in their two-and three-dimensional fictitious stress codes.

It can be concluded that numerical instability represents a persistent problem in
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elastodynamic time domain boundary element formulations, irrespective of whether the
codes use two- or three-dimensional fundamental solutions, and irrespective of whether
the integrals are performed analytically or evaluated numerically. A mathematical
analysis of the stability properties of the direct boundary element method for
elastodynamic problems in the time domain is beyond the scope of this study.
However, some intuitive observations can be made regarding stability. In particular, it
should be clear to the reader at this point that the results presented in this study
certainly appear stable for all ”practical purposes.”

The stability of elastodynamic boundary element methods depends on the
properties of fundamental solutions used in the formulation and the order of spatial
and temporal interpolation functions used in the numerical formulation. As stated in
Chapter 3, the fundamental solutions used in dynamic boundary element formulations
are solutions to the equations of motion. The equations of motion conserve energy; no
energy is lost and none is gained. The only way that a disturbance can dissipate is
through geometric damping and through diffraction and scattering, which may lead to
energy being scattered into adjacent media.

The requirement for the conservation of energy can in some cases lead to the
fundamental solution not decaying with space and time. Close-coupling between
neighboring and even remote elements can lead to a situation in which the response of
neighboring elements to a stimulus by a given element will involve more energy than the
original signal. This results in off-diagonal elements in the boundary element influence
coefficient matrix being of the same magnitude or greater than the diagonal self-effects.
A good example, discussed previously, is the case of a Rayleigh wave generation along a
suddenly loaded homogeneous half-plane, where the horizontal component of the
surface displacements given by (6-6) contains a non-decaying part. Also, a Rayleigh
wave propagating along a free crack surface does not decay with distance from the
source (Graff, 1975). These cases have in common the lack of a macroscopic length
scale, such as the thickness of a finite layer resting on a half-plane or the thickness of a
layer in which the crack is embedded. The introduction of a characteristic length into a

problem changes the nature of energy propagation significantly. Any surface waves that
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are generated become dispersive and thereby distribute the energy associated with the
initial disturbance over a number of elements. because waves of different frequencies
have different phase velocities and different energy transport velocities. This may in
some cases lead to a reduction in the amplitudes of disturbances away from the source,

when compared to non-dispersive surface waves.

The other issue that influences the stability of boundary element formulations is the

order of spatial and temporal interpolation functions used in the numerical formulation.
Any errors introduced into the discretization scheme, because of the polynomial
approximations of the tractions and displacements, can cause the total energy to
increase, eventually leading to unstable results at later times. Therefore, accurate
analytical integrations with higher order spatial and temporal interpolation functions
should be used to minimize the possibility of the accumulation of discretization errors
in the system. The use of higher order temporal interpolation functions should be
encouraged at all times, unless the problem involves Heaviside loading. In these cases,
the resulting displacement field is continuous, but the stresses will have a finite jump
that is not adequately modeled by a linear approximation. The use of linear time
interpolations to model the load response of Heaviside loading can result in artificial
reflections taking place as discussed previously for the case of a suddenly loaded
annulus. Therefore, two possibilities remain: (a) change the Heaviside loading to a
ramp-step loading in which the load is applied with a finite rise time of one time-step,
or (b) use a mixed time variation, in which the traction is assumed to stay constant,
while the displacement is taken to be linear over each time step. In this study,
approach (a) was selected, because it was felt that a linear approximation in time
would generally provide more accurate results than a constant approximation in time.
The size of the time step also plays an important role in the stability properties of
boundary element methods. An algorithm for which stability imposes a time step
restriction is called conditonally stable. An algorithm for which there is no time step
restriction imposed by stability is called unconditionally stable. All elastodynamic
boundary element formulations appear to be at best conditionally stable. A convenient

factor measuring the size of the time step At is the factor @Q; = c;At/ay, previously
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defined in Equation 6-6. This factor indicates how far the longitudinal wave travels in a
single time step in terms of the half-length of a boundary element. In this study, it was
found that stable results could be obtained for values of @) ranging from

0.05 < Q; < 1.6. In some cases, even a larger time-step was found to produce stable
results. As the time step becomes larger, the self-effects are distributed over a greater
number of nodes. This may result in a situation in which off diagonal elements are of
the same magnitude as the diagonal elements in the boundary element influence
matrices. Also, in cases where the loading response due to a suddenly applied load is
changing very rapidly, it was found that smaller time-steps were needed to adequately
predict the time histories of displacements and tractions. The linear temporal variation
in displacements and tractions results in "choppy” time-histories for very large time
steps in these cases. Therefore, it was found that Q; < 1.0 generally produces accurate
and stable results. The lower limit of Q; > 0.05 can also be explained by an observation
made by Manolis and Beskos (1988) that very small time steps result in non-vanishing

dilations and rotations at the wave front and should therefore not be used.
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Chapter 7

Conclusions and

Recommendations for Future

Work

Two direct boundary element methods for the analysis of elastostatic and
elastodynamic problems associated with two-dimensional homogeneous or piecewise
homogeneous problems have been developed. These methods have been verified for a
variety of problems, ranging in scope from well-defined homogeneous planar half-plane
and layered problems to cases in which curved geometries and complicated loadings are
common, such as found in the underground blasting of circular openings in layered
rock. Both methods assume piecewise quadratic in space interpolation functions
between element nodes and, in addition, the elastodynamic method assumes piecewise
linear temporal interpolation functions. Both methods assume the boundary to be
composed of a number of straight-line elements and both methods are currently limited
to linearly elastic problems where the material is piecewise homogeneous within any
given subregion. Two or more subregions can be connected together at an interface to
form a body with an arbitrary number of connected subregions. Currently, the
methods assume that each subregion is held together at an interface in a welded

contact, meaning that no slip or openings can exist at the interface between two
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subregions. Also, it can be concluded from the examples presented in this study that
the elastodynamic boundary element method is stable for ”practical purposes.”

The advantages of using analytical integration rather than numerical integration
include an increase in the numerical accuracy and stability of solutions, with an
associated reduction in computer time and memory requirements. Another reason for
using analytical integration is to capture the singular behavior of the self-effects better
than is possible with the numerical integration schemes reported in the literature.

The methods presented in this thesis are ideally suited for studying of wave
scattering phenomena associated with complicated layer and inclusion problems, such
as those encountered in pavement engineering and mining. One of the limitations of
the elastodynamic method presented in this study is that it does not easily lend itself
to the modeling of crack-like geometries, such as those associated with the presence}of
faults, joints or cracks. This feature can be incorporated by a coupling of the current
methods with displacement discontinuity methods, such as those developed by Siebrits
(1992). Other features that would improve upon the current methods are the
introduction of computer program restart options and a more efficient calculation and
storage of influence coefficients. Other possible improvements of the methods include
the coupling with finite element methods that allow for the modeling of non-linear
behavior and the inclusion of interfaces on which limited slip is allowed and the
incorporation of spring supports on the interfaces. Finally, despite the substantial
amount of work involved, there is merit in the extension of the elastodynamic method
to three dimensions to allow for a more realistic modeling of wave scattering

phenomena around layers and inclusions.
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Appendix A

Elastostatic Integrations

The integrals needed for the development of the boundary influence coefficients from
algebraic expressions (5-11) and (5-12) are presented below. These integrals are given
in terms of the local variables u = Z — £ and v = § —~ #j. (The transformation of local

variables to global variables is given by (5-2) and shown in Figure 5-1.) These integrals

are:
/gdu =e /lnrdu =e) [u In? -~ u + varctan -:—} (A-1)
r2 1
/ulnrdu=el/ugdu=617 lnr—§ (A-2)
u3 1 1 1 u
/u2gdu =e /u2 Inrdu = e; l:—3- Inr — §-u3 + §v2u - §v3 arctan (;)} (A-3)
/ du= [Edu=e—— _|nr (A-4)
9 _/7-2 u_el47'r( -v) n
u -1 U
/ug'udu = /uﬁdu = elm [u — varctan (;)} (A-5)
29 ud -—/uzﬁd = e r —4%In (A-6)
/“g'““‘ e ) r
v -1 U
/g,vdu = /;Edu = elm grctan (;) (A-7)
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and r? = u? + v2.

(A-9)
(A-10)
(A-11)
(A-12)
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(A-15)
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Additionally, the following integrals are needed for the calculation of the internal

stresses by (5-77):
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The traction self-effect boundary influence coefficients for £ — z are:

o), s S 2}
(BR), = / Usyérdz =0 (A-24)
(sz)J = / Uyz¢rdZ =0 (A-25)
(35), = [tnoraz - 5 (22555}
60), - o=
(85), = / Usybodz = 0 (A-28)
(B%), = [ Usebodz =0 (A-29)
(85),= [Uwpeta =g {52+ 5 (A-30)
(B4), = [omsetz= -5 (2252 -5
(85), = [Vaerdz =0 (A-32)
(BL), = / Usy$rdZ = 0 (A-33)
R

Similarly, the displacement self-effect boundary influence coefficients for £ — z are:

(48), = / T,z drdZ = 0.25 (1 + %)
1

“8r(l=2) {(1 + cosv) sin 283 + siny cos 23} (A-35)
1
(Afy)J = /sz¢Rdi = —m {-(1-2v)[4 -2In(2a)]
— (1 4 cos+) cos 20 + sinysin 25} (A-36)
151



(42), = [Teondz=-

L
87 (1l —v)

—~ (1 + cos+) cos 208 + sin-ysin 23}

(a2), /Tyy(dex 0.25 (1 + ﬂ)

1
T8r(1-v)

{(1 - 2v)[4 —2In(2a)]

{= (1 4+ cos+)sin 28 — sin+y cos 25}

(Agr)J = /T::¢Ldi =0.25 (1 + _;7;)

1

T 8w (1-v) {=(

(45), = [Topraz=-

1
m {— (1 - 21/) [2 In (20)

+ (1 + cos ) cos 28 + sinysin 25}

(1), = [Toworie= -

1

m {(1 - 21/) [2 ln(2a)

+ (1 + cos+y) cos 23 + sinysin 23}

(4%), / Tyyb1d% = 0.25 (1+ )

1

T8 (l-v)

{(1 + cos~y) sin 23 + sin -y cos 203}
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(A-38)

(A-39)
(A-40)
(A-41)

(A-42)

(A-43)

(A-44)

(A-45)
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Appendix B

Elastodynamic Integrations

All the integrations needed to develop the elastodynamic boundary influence

coefficients can be expressed in terms of a set of 12 basic, recurring integrals. In the

following, these integrals are presented in terms of the local variables u = Z — ¢ and

v = § — 1. (The transformation of local variables to global variables is given by (5-2)

and shown in Figure 5-1.) The integrals are:

/cosh'1 (Et-> du = wucosh™! (E) + ct arcsin (_u.__
. . N

ctu
— £ At
varctan (v\/cit§ - 'r2>
2
/ucosh'1 g) du = -7‘—<;05h"1 (ﬁ) - <2~/c2t2 — ,.2)
T 2 T 2
ct ud ct
/’U.2 COSh-.1 (—) du = ——cosh—l (__)
T 3 T
+ct -c-z-f- - -l-v2 arcsin (_____u )

3 ctu
- -5 arctan

vV/c2t? — 72

2
/\/c2t2 e g\/c2t2 —r2 4 __2_v
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/u\/c2t2 —-ri= —% (czt2 - r2>3/2 (B-5)

/u2 Vit —r2 = -;— (c2t2 - v2)2 arcsin <—u—>

1 ct ctu u
—_ /2% — 72 = Z arct (——) - i (———) B-7
/r2 c T _ arctan e g arcsin oo (B-7)

—u—\/c2t2 — 72 =/c22 — r2 — ctcosh™! ¢ (B-8)
r2 r

v2
2ct3

ctu u
242 _ 72 = 242 _ p2 -
/ —Vc2 —r arctan (v\/c2t2 _7_2) + 21)27‘2\/c t2 —r (B-9)

/%\/&tz —-ri= 2Lct cosh™! (%) 12 VA2 —r? (B-10)

2r
1 3/2
— /22 — 2 — (2 =
/7‘5 - 4c2t2v2r4 (Cz r )
2 _,2
% g, @) s
MpYET R et -t 8c2t2ryt ct-r

ctu

1
+(-8$__4ctv3 _—S&t:’v) arctan (-———-———v T —r2) (B-11)
/ —Vcit? —r? = ( 1) 22 —-r2 4

8c2t2r2 ~ 44

: cosh™! (%) (B-12)

Certain simplifications of the terms in (5-34) and (5-35) are needed to obtain the
above integrals. First, the components of the displacement tensor (5-34) and the
associated integrals will be listed and simplified term by term. Subsequently, the
components of the traction tensor (5-35) and the associated integrals will be listed. All

of these algebraic manipulations are based on repeated use of the following identities:
r? =u? 4+ 02 (B-13)

and

(czt2 - 1‘2)3/2 = c?t?\/ct2 — r2 — r2\/c22 — 12 (B-14)
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Integrals needed for the displacement boundary influence calculations are of the
form [uUi;du, [TUi;dg, [T2U;jdu. Now, evaluating each distinct term in (5-34)

results in

2 3/2
/u4 (c t2 — r2) / du = /{(c2t2 + v2> -1—2 - c2t21)2l2 - 1} Vcit? —ridu  (B-15)
T T T

7-4

2 3/2
/u_ (02t2 - r2) / udu = / {C2t2r 2t2v — —u+v ——} Vcit? —ridu  (B-16)

2 2
u oo a\¥2 o 2,2, 2\% 9 29221
/r4(Ct r) u‘du = (ct-i—v)1~2 u ctvr2
+ c?t? 4;12} Vc2t? - r2du (B-17)
2 2
/Ez(czt2 ) Y du—/( At 27_4 - )\/czt2—r2du (B-18)

r

2 3/2
/-1-)74— (c2t2 - r2) / udu = /{c2t2v2-y- ~ c?t? 2—12'} Vcit? — ridu (B-19)
r r4 r
2 3/2 !
/-:7 (c2t2 _7.2) / wldy = /{(c2t2v2 +v4) %
Y WL } VAT 4y (B-20)

/uv( 22 )3/ du—/(c t2v— — = > VEAtZ — ridu (B-21)

ré

/ﬂ (c"’t2 )3/2 udu —/{( 242y + o3 ) 1 - c2t2v3— —v} Vc2t? —ridu (B-22)

rd

3/2
/-1-:} (c2t2 - 1'2) uldu = /{(c2t2v +v3) -7%
- c2t2v37-fi4 - vu} V22 — riduy (B-23)

Similarly, the integrals needed for the traction boundary influence calculations are

of the form [TUi;du, [TUi;dg, [T2U;jdu. The required integrals not already listed
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above are:
/:—zmdu=/{r—12—:—z}\/c2_ti’—_ﬂ-du (B-24)
JvaEE=w= [ {4 - n i} v (B-25)
/% \/cTtT——-Tdu—/{—l‘{— 2;%}mdu (B-26)
/ mdu-/{__v _}mdu (B-27)

This completes the listing of all integrals that are necessary to obtain the dynamic
displacement and traction boundary influence coefficients.

The self-effects for the displacement coefficients for the case £ — z are:

/ Usardz = 21;) 7 (ccs28(G0Y) + FFAL) (B-28)

/ UsybrdZ = 27;’ 7 (sin28(GG1)) (B-29)

/ Uz ds = Qw; 7 (sin2(GG1)) (B-30)

/ Uyybrdz = 2":”% {~cos28(GG1) + FFAL} (B-31)
/ UsedodZ = 27;)6% {cos28(GG2) + FFA3) (B-32)

/ Usybodz = 2“; 7 (sn28(GG2)) (B-33)

/ Uysbcds = 27;) - (5n28(GG2)) (B-34)

/ UyybodZ = 5?%23,’ {—cos28(GG1) + FFA2} (B-35)
/ UsedrdE = 27; 7 (c0s26(GG1) + FFA1L} (B-36)

/ Usydrdz = 27;) 7 (sin26 (GG} (B-37)
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1
/ Uyednds = 7 sin25 (GGY)) (B-38)
_ 1
[ Unrdz = gy (=cos23(GGY) + FFAL) (B-39)
in which
242 2 2 _
- _at” ct _ le 1 m
cel = 4aAt ln Q- ) dac) At <8a2 1) (arctan( -a )

Czt2

5c3a’ 3/2 5c3a? ths 2,3
2c32t (o1 - 2cSZt VO -1+ - Zc':ﬂ tn <V Q- 1)

C‘%t2 Qz - 1 s 3/2
8a2 ! (arctan ( ) - -2-) 2¢9 At (Q2 )
Gt

+2c2At Q-1- 3aAt
(B-40)

0o
SN———

_ tadt (= Gt (48 Qi -1
FFAL = X382 ln( Q- 1) IRV, (24«:2‘“1 arctan | -——— | =
5c3a? [, 3/2 5¢;§a
+6¢?At (Ql 6c3AtV B 8aAt

2 _
e (@) + 2 (cztz H) (m (E) ] )

4At \ 24a2 —a

5a2 /o 3/2 5a -
e Gt V- 8aAt

(B-41)

GG2 = gt (cztz + 1) {arctan (E> — arctan (@)}

4C1At 40.2 —a
2 2 2 — 1 2 - 1
1ot "22t arctan E — arctan E
4At 4(12 —-a a
1302 &/, 3/2 -
T 2dcAtd (Q gcl At Cz\/Q -1
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13a2 /o 32 5a? 2
i (@ -1)" +gom V-1

(B-42)

_ 2ta c . a2 2/, 3/2
FFA2 = 2 21n(c21+,/Q1 1>+2461At62{(qz1 1)

2 _ 2 _
_4?t;t (-19%127 -— 1) {arctan ( Qla 1) — arctan ( Qtll 1)}
) -
2 2 /
+3_ZIE In <Q2 +yQi - 1) + 24::12At (@F - 1)3 :
__C_2L2 (éﬁi - ) {arcta.n (@> — arctan (ﬁé—_——l) }

4At \ 12q2 —-a

24c1At c’-’ Vet - 24c AtV Q-1

(B-43)

in which Q1 = 1.0 if ¢;t/r < 1.0, Q1 = cit/r if et/r > 1.0, Q2 = 1.0 if cot/r < 1.0, Q2
= cat/r if cat/r > 1.0, a is the half-length of each element and At is the size of each
time step. -

Similarly, self-effects for the traction coefficients for the case §—zare:

/Tudmdi: = —2% {cos2B(FF1) —sin28 (GL1) - HHAl} (B-44)
/ Ty, 61dE = 51; {cos28(GL1) +sin 28 (FF1) — LLAL} (B-45)
/ Tdd = 517; {cos28(GL1) +sin28 (FF1) + LLAL} (B-46)
/ T,y fLdZ = % {—cos 28 (FF1) +sin28(GL1) — HHAL} (B-47)
/T::¢Cd$ 2At (B‘48)
/ Teybodz =0 (B-49)
/ TyabodZ =0 (B-50)
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L t
/Tyycpcdz = Q—A—t

/ To6Rdz = 2—17; {cos 28 (FF1) +sin28 (GL1) — HHAL)

/ Ty érdE = 51; {=cos28(GL1) +sin28 (FF1) + LLA1}

/ T,z $RdT = 2% {~cos28(GL1) +sin 28 (FF1) — LLAL}

/ Tyyérdz = 51; {-cos28 (FF1) —sin28 (GL1) — HHAI)
in which

FFl = 2; <§ - 1) sin (m — )

HHAL = —2—A-—t(7f+’)/)

GLL = 2ztxt (2;2222—1) (VQ2

)+
—-—/Q% - 3+34"22 \/Q2—1—& 2 1
9At 6At c? 1 6At YV *?

t 32 [ 349 Qf -
At a2 (c_% - ) 82 At (— — arctan <
9c3t? [« y@3-1 3
Y, (5 — arctan ( " )) m (?f —1)cos(m—7)

LLAl = <2§ 1) Att{

1 12 2a /. 32  a
- = — -1 —/Q% -1
+ 2 12 a? + 3yt (Ql ) * c @
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(B-55)
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(B-59)

in which Q1 and Q2 are as defined previously, and v = 37 — 3/~! is the difference of

the inclinations of elements J and J — 1.
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Appendix C

Derivatives for the Calculation of

Interior Dynamic Stresses

The derivatives necessary to obtain the interior dynamic stresses from (5-79) by
substituting (5-78) into the kinematic equation (3-2) and Hooke's law (3-3) are listed
below. These results are due to Tian (1990). Because the integrals in (5-78) are all
evaluated in the local coordinate system (Z,), whereas the required derivatives are
with respect to the global coordinate system, it is necessary to use (5-81), which is the
chain rule for partial differentiation to establish a relationship between the global and
local coordinates. The following differentiations are with respect to the local variables
and have to be transformed into differentiations with respect to global variables with
the use of (5-81).

All the integrals necessary to evaluate (5-78) are listed in Appendix B, and they are
all in terms of the local variables u = Z — £ and v = § — 7 (see also Figure 5-1). To
obtain (5-79) it is necessary to evaluate the derivatives of these integrals with respect

to £ and 7, rather than u and v, which leads to the relationships

o _ _9
o€ ~  Ou
o 0
% = (©1)
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In the following, the necessary derivatives of the individual terms in (B-1) to (B—12) are
listed. First, the derivatives with respect to £ are listed, followed by the derivatives

with respect to 7.

The derivatives with respect to £ that are necessary to evaluate (5-79) are:

.Cf_s. (r?) = -2 (C-2)

0 u
5 (Vo -7) = (co

—% (czt2 - r2)3/2 = Juv/c?t? — r? (C-7)
8 i fct\ _ uct
EECOSh (7> oy .r (C-8)
_6_ arctan (__ctu_) = ____vct_ (C‘g)
o€ wWett —r2) . r/Et -2
a i u 1
-52- arcsin (——-—m) = "‘—_m (C—lO)

Similarly, the derivatives with respect to £ that are necessary to evaluate (5-79) are:

.5?;’ (%) = -2 (C-11)
% (2 -r2)" =so/BE -2 (C-15)
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i

g cosh™! (2) S —
on r) /e —r?
0 ( ctu > uct
— arctan {| ————— = ———
o1 v/cit? =72 r2/c2t? — 12
uct
(2t2 — v2) V/c?t? - r?
a _ < u ) uv
—arcesin | —m——— ) = - , ‘
an Vit — v (c2t? - v2) V/c2t2 —r2

163

(C-16)

(C-17)

(C-18)






Appendix D

Additional Results for Dynamic

Problems

This appendix contains supplemental graphical results for the following three cases
presented in Chapter 6: Lamb’s problem (Section 6.2.3), wave propagation through
layered material (Section 6.2.6) and underground explosion in a two-layered rock
(Section 6.2.7). The displacement and velocity time histories are listed for all three
problems, except Lamb’s problem, for which only the displacements are given. All
results are calculated in " field-point windows” which are defined by four corner nodes.
These nodes are for (a) Lamb’s Problem: (60m, —2m), (150m, —2m), (150m, —32m)
and (60m, —32m), (b) wave propagation through layered material: (0m, —2m),
(120m, —2m), (120m, —42m) and (Om, —~42m), and finally (c) the underground
explosion problem: (0,-2), (120, -2), (120, —42) and (0, —42).
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Figure D-1: Displacement vectors at times 20At and 25A¢ for Lamb’s problem.
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Figure D-2: Displacement vectors at times 30At and 35At for Lamb’s problem.
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Figure D-3: Displacement vectors at times 40A¢ and 45A¢ for Lamb's problem.
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Figure D-4: Displacement vectors at times 50At and 55A¢ for Lamb’s problem.
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Figure D-8: Displacement vectors at times 90At and 95At for Lamb’s problem.
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Figure D-9: Displacement vectors at times 100At and 105At¢ for Lamb’s problem.
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Figure D-10: Displacement vectors at times 110At and 115At for Lamb’s problem. -
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Figure D-11: Displacement vectors at time 120At for Lamb’s problem.
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Figure D-12: Displacement vectors at times 1At and 3At for the wave propagation
through layered material problem.
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Figure D-13: Displacement vectors at times 6At and 9At for the wave propagation

through layered material problem.
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Figure D-14: Displacement vectors at times 12A¢ and 15At for the wave propagation

through layered material problem.
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Figure D-15: Displacement vectors at times 18A¢ and 21At for the wave propagation

through layered material problem.
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Figure D-17: Displacement vectors at times 30At and 33At for the wave propagation
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Figure D-18: Displacement vectors at times 36At and 39At¢ for the wave propagation

through layered material problem.
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Figure D-20: Displacement vectors at times 48At and 51At for the wave propagation

through layered material problem.
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Figure D-21: Displacement vectors at times 54At and 57At for the wave propagation

through layered material problem.
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Figure D-22: Displacement vectors at times 60At and 63At for the wave propagation

through layered material problem.
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Figure D-23: Displacement vectors at times 66At and 69At for the wave propagation

through layered material problem.
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Figure D-24: Displacement vectors at times 72At and 75A¢ for the wave propagation

through layered material problem.
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Figure D-25: Velocity vectors at times 1At and 3At for the wave propagation through

layered material problem.
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Figure D-26: Velocity vectors at times 6At and 9At for the wave propagation through

layered material problem.
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Figure D-27: Velocity vectors at times 12At and 15At for the wave propagation
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Figure D-28: Velocity vectors at times 18At and 21At for the wave propagation
through layered material problem.
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Figure D-29: Velocity vectors at times 24At and 27At for the wave propagation
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Figure D-30: Velocity vectors at times 30At and 33At for the wave propagation

through layered material problem.

194



Velocity Vector Plot: Step 36 Window 1

TESTING
Legend
Vector
S84 1 e T D
Vet vttt e Bound:
L P A ) vt
- P A ] e
. r 2P v g4 gt
D SR Migimum:  0.000e+000
............. !‘.‘nm. 3."““
Magrification: 12699.00

TV e il W ARGy

Velocity Vector Plot: Step 39 Window 1

TESTING
Legend
Vector
A Tt —
e c oL B
........ PR
M e
....... s ror L.
_____ Minimum:  0.000e +000
__________ Mazimum:  ).814e-004
Magnification: 12699.00
e | TIAT

Figure D-31: Velocity vectors at times 36At and 39At for the wave propagation

through layered material problem.

195




" A S hnm Wy S au o e

Velocity Vector Plot: Step 42 Window 1

TESTING
Legend
Vecsor
............ R —
...... [ . v s -
...... LI I N Y v b4
vt v
..... D A A I g

Mizimum:  0.000e +000
Mazimum:  3.814e-004

Magnification: {2699.00

W TW o= e L RS EGTTRY

Velocity Vector Plot: Step 45 Window 1
TESTING

Legend
Vector

MM 5
------ I ) ' b4
Cee T Maximum:  3.814e-004
Magnification: 12699.00

W T e 1L 90 SRS RV KT

Figure D-32: Velocity vectors at times 42At and 45At for the wave propagation
through layered material problem.
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Figure D-33: Velocity vectors at times 48At and 51At for the wave propagation
through layered material problem.
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Figure D-34: Velocity vectors at times 54At and 57At for the wave propagation

through layered material problem.
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Figure D-35: Velocity vectors at times 60At and 63At for the wave propagation

through layered material problem.
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Figure D-36: Velocity vectors at times 66At and 69At for the wave propagation

through layered material problem.
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Figure D-37: Velocity vectors at times 72At and 75At¢ for the wave propagation
through layered material problem.
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Figure D-38: Displacement vectors at times 5At and 10A¢ for underground explosion

in a two-layered rock.
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Figure D-39: Displacement vectors at times 15At and 20At for underground explosion

in a two-layered rock.

203




Displacement Vector Plot: Step 25 Window 1
TESTING
Legend
Vector
R N
[ RN 4
"’f" ......
t.{”)"o-
;"/‘":-:::::Zﬁf Migimum:  0.0002+000
APt 2w o o - . .
P Magimumm:  4.0135¢-002
—fn -
Magnification: 100.00
W T s wew 1L, T8 ¢ SRS AINT Y
Displacement Vector Plot: Step 30 Window 1
TESTING
Legend
Vectoe
YRV o
;’f""‘ 4
P PP s e v
”’:‘oo--
Amma ool
/,/'a—-.---...... Minimum:  0.000e+000
aTIoIiiii Maximum: 40156002
bt > e e a
Magnification: 100.00

e Raw 1L N 5 Y

Figure D-40: Displacement vectors at times 25At and 304t for underground explosion

in a two-layered rock.

204



! Displacement Vector Plot: Step 35 Window 1
; TESTING

|
i
‘ Legend
VYecwr
222044
A VN YYY
A AN 72amecn. . Y
;’,)llaoo ......
A S AR
I‘I'd'"ﬂ----

,ﬂ‘——---.::::
Aframamosil il Minimum:  0.0008 +000
ool b S Maximum:  4.015¢-002

Maguification: 100.00

Lﬂﬁ:?:Tﬁﬁluﬁmm

Displacement Vector Plot: Step 40 Window 1

TESTING
Legend
Vector
2144344,
WYY YIVIVE
f”’)l’aao.-- .. B 7
AAP L s on
//}lﬂu—-_..“
A Il
el T T O Minimum:  0.000e+000
oo SIIIIIIIIIN Maxizun: 4015002
%—-----_-l..
Magnification: 100.00

TG e e (L 190 € D WO KY

Figure D-41: Displacement vectors at times 35At and 40At for underground explosion

in a two-layered rock.
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Figure D-42: Displacement vectors at times 45At and 50At for underground explosion

in a two-layered rock.
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Figure D-43: Displacement vectors at times 55A¢ and 60At for underground explosion

in a two-layered rock.
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Figure D-44: Displacement vectors at times 65At and 70At for underground explosion

in a two-layered rock.

208



Displacement Vector Plot: Step 75 Window 1 {
TESTING ;
|
Legend
Vector
y—— ry — —— e T T
T 1 027 P it et gy ety ity sttt 3wt S0 S B o0 -
P U 1 20 APt ot by iy iy P D > S D D W o on o b4
L B I I I A T T TR T I |
*“‘L":"“-——_-----—---_’-‘
*Httfn...ITIIZZZZ:IZI:ZZZZ
‘“Hn' .................. J | Minimum:  0.000e +000
SUT e e s I Il | e 4 01se002
AL SN 2 SO Pt
Magnification: 100.00
— [} %1 .4
Displacement Vector Plot: Step 80 Window 1
TESTING
Legend
Vector
————— T T I T

..... - . D S S ) P D i S b aB oo A

e v e m o w s st S b ad wa ey =P =B wp o ot o
s e W mE e W s eses a . e v e w o

Hn‘ih‘?
Tivty Migimum:  0.000e +000
BB BRR .
\BRBAR Maximum:  4.015¢-002
AR BN
Magnification: 100.00
W Toa s e 1T C G Y

Figure D-45: Displacement vectors at times 75At and 80At for underground explosion

in a two-layered rock.
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Figure D-46: Displacement vectors at times 85At and 90At for underground explosion

in a two-layered rock.
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Figure D-50: Displacement vectors at times 125At and 130At for underground

explosion in a two-layered rock.
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Figure D-52: Displacement vectors at times 145At and 150At for underground

explosion in a two-layered rock.
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Figure D-53: Velocity vectors at times 5At and 10At for underground explosion in a

two-layered rock.
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Figure D-54: Velocity vectors at times 15At and 20At for underground explosion in a

two-layered rock.
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Figure D-55: Velocity vectors at times 25A¢ and 30At for underground explosion in a

two-layered rock.
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Figure D-56: Velocity vectors at times 35At and 40At for underground explosion in a

two-layered rock.
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Figure D-57: Velocity vectors at times 45At and 50At for underground explosion in a
two-layered rock. '
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Figure D-58: Velocity vectors at times 55At and 60At for underground explosion in a

two-layered rock.

Minimum:  0.000¢ +000
Maximum:  9.385¢-001

Magnificstion: 3.00

o N s . .::::::::... Maximum:  9.88%¢-001
LN S . e @%@ mme e
Magrification: 3.00
_
W Ticaas wee 1L 91T ¢ BRSHIIGRY
Velocity Vector Plot: Step 60 Window 1
TESTING
Legend
Vector

T T e (L T T SRS RY

222




t Velocity Vector Plot: Step 65 Window 1
? TESTING

Legend

Vecwr

i

Lo~y N R

2RSS X P

N - -
“ v
cese
]
¢t

.

((’._n-t---——-- - .

i T I . Minimum:  0.000e+000
Gy, PP P oy, S e > - @ e e : : : : : : : 'l . : 9,8&.“)[

B B, B B B O, S T - -
NS e S T SR Y

Magnification: 3.00

T o e 1, 199 C.GAE-WNE0CT WY

Velocity Vector Plot: Step 70 Window 1

B e e e = == s e

TESTING
Legend
Vector
RN ::‘
vy 1 R R R R R R R -
YY //((llll\\vs-~~---_
YY Gowe et s 100 v sy s
VI NEEEE NN X N
p 14 -

PR Rl ielalindndt I AL BE A B

AN\ 6

<€
<
L

Misiswm:  0.000e+000

’“--~N\h-------- o« s e

s e e
[ aoR) K

y PO bk B L R IR S T
N B Maximum:  9.885¢-001
LS R S e S T
Magnificatoa: 3.00
W T e e i1 16 C D FEIC KY

Figure D-59: Velocity vectors at times 65At and 70At for underground explosion in a

two-layered rock.
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Figure D-60: Velocity vectors at times 75At and 80At for underground explosion in a

two-layered rock.
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Figure D-62: Velocity vectors at times 95At and 100A¢ for underground explosion in a

two-layered rock.
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Figure D-63: Velocity vectors at times 105At and 110At for underground explosion in

a two-layered rock.
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Figure D-66: Velocity vectors at times 1354t and 140At for underground explosion in

a two-layered rock.
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Figure D-67: Velocity vectors at times 145A¢ and 150At for underground explosion in

a two-layered rock.
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